Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58990
Registro completo de metadados
Campo DCValorIdioma
dc.creatorOliveira, Jordão N.-
dc.creatorSantos, Jônatas C.-
dc.creatorJumbo, Luis O. Viteri-
dc.creatorAlmeida, Carlos H. S.-
dc.creatorToledo, Pedro F. S.-
dc.creatorRezende, Sarah M.-
dc.creatorHaddi, Khalid-
dc.creatorSantana, Weyder C.-
dc.creatorBessani, Michel-
dc.creatorAchcar, Jorge A.-
dc.creatorOliveira, Eugenio E.-
dc.creatorMaciel, Carlos D.-
dc.date.accessioned2024-03-08T19:33:40Z-
dc.date.available2024-03-08T19:33:40Z-
dc.date.issued2022-02-09-
dc.identifier.citationOLIVEIRA, Jordão N.; SANTOS, Jônatas C.; JUMBO, Luis O. Viteri; ALMEIDA, Carlos H. S.; TOLEDO, Pedro F. S.; REZENDE, Sarah M.; HADDI, Khalid; SANTANA, Weyder C.; BESSANI, Michel; ACHCAR, Jorge A.; OLIVEIRA, Eugenio E.; MACIEL, Carlos D. Bayesian multi-targets strategy to track apis mellifera movements at colony level. Insects, v. 13, n. 2, p. 1-12,Feb. 2022. DOI: https://doi.org/10.3390/insects13020181.pt_BR
dc.identifier.urihttps://www.mdpi.com/2075-4450/13/2/181pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58990-
dc.description.abstractInteractive movements of bees facilitate the division and organization of collective tasks, notably when they need to face internal or external environmental challenges. Here, we present a Bayesian and computational approach to track the movement of several honey bee, Apis mellifera, workers at colony level. We applied algorithms that combined tracking and Kernel Density Estimation (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally occurring beehive background. Before release, labeled bees were fed for one hour with uncontaminated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the bees’ release. Our results revealed that the algorithm tracked the labeled bees with great accuracy. Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far from the brood area, and exhibited reduced swarm entropy and energy values when compared to uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.pt_BR
dc.languageenpt_BR
dc.publisherMDPIpt_BR
dc.rightsacesso abertopt_BR
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceInsectspt_BR
dc.subjectCrowded image processingpt_BR
dc.subjectLiving systempt_BR
dc.subjectEntropypt_BR
dc.subjectKernel density estimationspt_BR
dc.subjectProbability distribution functions; bee contaminationpt_BR
dc.titleBayesian Multi-Targets Strategy to Track Apis mellifera Movements at Colony Levelpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEN - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Bayesian Multi-Targets Strategy to Track Apis mellifera Movements at Colony Level.pdf3,1 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons