Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/58930
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Silva, Thaine Teixeira | - |
dc.creator | Lima, Robson Borges de | - |
dc.creator | Souza, Rafael Lucas Figueiredo de | - |
dc.creator | Moonlight, Peter W. | - |
dc.creator | Cardoso, Domingos | - |
dc.creator | Santos, Héveli Kalini Viana | - |
dc.creator | Oliveira, Cinthia Pereira de | - |
dc.creator | Veenendaal, Elmar | - |
dc.creator | Queiroz, Luciano Paganucci de | - |
dc.creator | Rodrigues, Priscyla Maria Silva | - |
dc.creator | Santos, Rubens Manoel dos | - |
dc.creator | Sarkinen, Tiina | - |
dc.creator | Paula, Alessandro de | - |
dc.creator | Barreto-Garcia, Patrícia Anjos Bittencourt | - |
dc.creator | Pennington, Toby | - |
dc.creator | Phillips, Oliver Lawrence | - |
dc.date.accessioned | 2024-02-26T17:21:35Z | - |
dc.date.available | 2024-02-26T17:21:35Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | SILVA, T. T. et al. Mapping wood volume in seasonally dry vegetation of Caatinga in Bahia state, Brazil. Scientia Agricola, Piracicaba, v. 80, 2023. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/58930 | - |
dc.description.abstract | The Caatinga biome in Brazil comprises the largest and most continuous expanse of the seasonally dry tropical forest (SDTF) worldwide; nevertheless, it is among the most threatened and least studied, despite its ecological and biogeographical importance. The spatial distribution of volumetric wood stocks in the Caatinga and the relationship with environmental factors remain unknown. Therefore, this study intends to quantify and analyze the spatial distribution of wood volume as a function of environmental variables in Caatinga vegetation in Bahia State, Brazil. Volumetric estimates were obtained at the plot and fragment level. The multiple linear regression techniques were adopted, using environmental variables in the area as predictors. Spatial modeling was performed using the geostatistical kriging approach with the model residuals. The model developed presented a reasonable fit for the volume m3 ha with r2 of 0.54 and Root Mean Square Error (RMSE) of 10.9 m3 ha–1. The kriging of ordinary residuals suggested low error estimates in unsampled locations and balance in the under and overestimates of the model. The regression kriging approach provided greater detailing of the global wood volume stock map, yielding volume estimates that ranged from 0.01 to 109 m3 ha–1. Elevation, mean annual temperature, and precipitation of the driest month are strong environmental predictors for volume estimation. This information is necessary to development action plans for sustainable management and use of the Caatinga SDTF in Bahia State, Brazil. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Escola Superior de Agricultura "Luiz de Queiroz" | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Scientia Agricola | pt_BR |
dc.subject | Seasonally dry tropical forests | pt_BR |
dc.subject | Regression kriging | pt_BR |
dc.subject | Geostatistical modeling | pt_BR |
dc.title | Mapping wood volume in seasonally dry vegetation of Caatinga in Bahia state, Brazil | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCF - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Mapping wood volume in seasonally dry vegetation of caatinga in Bahia state, Brazil.pdf | 3,72 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons