Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58930
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Thaine Teixeira-
dc.creatorLima, Robson Borges de-
dc.creatorSouza, Rafael Lucas Figueiredo de-
dc.creatorMoonlight, Peter W.-
dc.creatorCardoso, Domingos-
dc.creatorSantos, Héveli Kalini Viana-
dc.creatorOliveira, Cinthia Pereira de-
dc.creatorVeenendaal, Elmar-
dc.creatorQueiroz, Luciano Paganucci de-
dc.creatorRodrigues, Priscyla Maria Silva-
dc.creatorSantos, Rubens Manoel dos-
dc.creatorSarkinen, Tiina-
dc.creatorPaula, Alessandro de-
dc.creatorBarreto-Garcia, Patrícia Anjos Bittencourt-
dc.creatorPennington, Toby-
dc.creatorPhillips, Oliver Lawrence-
dc.date.accessioned2024-02-26T17:21:35Z-
dc.date.available2024-02-26T17:21:35Z-
dc.date.issued2023-
dc.identifier.citationSILVA, T. T. et al. Mapping wood volume in seasonally dry vegetation of Caatinga in Bahia state, Brazil. Scientia Agricola, Piracicaba, v. 80, 2023.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58930-
dc.description.abstractThe Caatinga biome in Brazil comprises the largest and most continuous expanse of the seasonally dry tropical forest (SDTF) worldwide; nevertheless, it is among the most threatened and least studied, despite its ecological and biogeographical importance. The spatial distribution of volumetric wood stocks in the Caatinga and the relationship with environmental factors remain unknown. Therefore, this study intends to quantify and analyze the spatial distribution of wood volume as a function of environmental variables in Caatinga vegetation in Bahia State, Brazil. Volumetric estimates were obtained at the plot and fragment level. The multiple linear regression techniques were adopted, using environmental variables in the area as predictors. Spatial modeling was performed using the geostatistical kriging approach with the model residuals. The model developed presented a reasonable fit for the volume m3 ha with r2 of 0.54 and Root Mean Square Error (RMSE) of 10.9 m3 ha–1. The kriging of ordinary residuals suggested low error estimates in unsampled locations and balance in the under and overestimates of the model. The regression kriging approach provided greater detailing of the global wood volume stock map, yielding volume estimates that ranged from 0.01 to 109 m3 ha–1. Elevation, mean annual temperature, and precipitation of the driest month are strong environmental predictors for volume estimation. This information is necessary to development action plans for sustainable management and use of the Caatinga SDTF in Bahia State, Brazil.pt_BR
dc.languageen_USpt_BR
dc.publisherEscola Superior de Agricultura "Luiz de Queiroz"pt_BR
dc.rightsacesso abertopt_BR
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceScientia Agricolapt_BR
dc.subjectSeasonally dry tropical forestspt_BR
dc.subjectRegression krigingpt_BR
dc.subjectGeostatistical modelingpt_BR
dc.titleMapping wood volume in seasonally dry vegetation of Caatinga in Bahia state, Brazilpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Mapping wood volume in seasonally dry vegetation of caatinga in Bahia state, Brazil.pdf3,72 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons