Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58860
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLima, Michael Douglas Roque-
dc.creatorTrugilho, Paulo Fernando-
dc.creatorBufalino, Lina-
dc.creatorDias Júnior, Ananias Francisco-
dc.creatorRamalho, Fernanda Maria Guedes-
dc.creatorProtásio, Thiago de Paula-
dc.creatorHein, Paulo Ricardo Gherardi-
dc.date.accessioned2024-01-30T13:57:08Z-
dc.date.available2024-01-30T13:57:08Z-
dc.date.issued2022-11-
dc.identifier.citationLIMA, M. D. R. et al. Efficiency of near-infrared spectroscopy in classifying Amazonian wood wastes for bioenergy generation. Biomass and Bioenergy, [S.l.], v. 166, p. 1-11, Nov. 2022. DOI: 10.1016/j.biombioe.2022.106617.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0961953422002793pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58860-
dc.description.abstractFinding methods to classify heterogeneous logging wastes from sustainable forest management in the Brazilian Amazonia is essential to increase the production and quality of charcoal. This study proposes a method to classify logging wastes of 12 Amazon hardwoods based on near-infrared (NIR) spectroscopy. The traits evaluated were basic density (BAD) and wet basis moisture content (MCwb). The spectral signatures obtained from the radial and transverse surfaces of the wood samples were submitted to principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA). Spectral data measured on the radial surface of the wood yielded clearer clusters in the PCA score graph, considering the five BAD classes (very low, low, medium, high, and very high). The most promising PLS-DA model for wood classification based on BAD classes was calibrated with the radial surface spectra treated by the first derivative and validated in an independent lot with 97.9% correct classifications. A few incorrect classifications of low-density wood occurred. Still, NIR spectroscopy combined with multivariate statistics proved to be a reliable and fast tool to distinguish the wood from branches of native Amazonian species concerning BAD. It will enable more rationality and sustainability in using these natural resources for bioenergy purposes.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceBiomass and Bioenergypt_BR
dc.subjectBasic densitypt_BR
dc.subjectCharcoalpt_BR
dc.subjectClusterspt_BR
dc.subjectChemometric methodpt_BR
dc.subjectNIRSpt_BR
dc.subjectNear infrared spectroscopypt_BR
dc.titleEfficiency of near-infrared spectroscopy in classifying Amazonian wood wastes for bioenergy generationpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.