Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58741
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSumnall, Matthew J.-
dc.creatorAlbaugh, Timothy J.-
dc.creatorCarter, David R.-
dc.creatorCook, Rachel L.-
dc.creatorHession, W. Cully-
dc.creatorCampoe, Otávio C.-
dc.creatorRubilar, Rafael A.-
dc.creatorWynne, Randolph H.-
dc.creatorThomas, Valerie A.-
dc.date.accessioned2024-01-03T17:39:10Z-
dc.date.available2024-01-03T17:39:10Z-
dc.date.issued2023-
dc.identifier.citationSUMNALL, M. J. et al. Estimation of individual stem volume and diameter from segmented UAV laser scanning datasets in Pinus taeda L. plantations. International Journal of Remote Sensing, [S.l.], v. 44, n. 1, 2023.pt_BR
dc.identifier.urihttps://www.tandfonline.com/doi/abs/10.1080/01431161.2022.2161853pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58741-
dc.description.abstractThe competitive neighbourhood surrounding an individual tree can have a significant influence on its diameter at breast height (DBH) and individual tree stem volume (SV). Distance dependent competition index metrics are rarely recorded in traditional field campaigns because they are laborious to collect and are spatially limited. Remote sensing data could overcome these limitations while providing estimation of forest attributes over a large area. We used unoccupied aerial vehicle laser scanning data to delineate individual tree crowns (ITCs) and calculated crown size and distance-dependent competition indices to estimate DBH and SV. We contrasted two methods: (i) Random Forest (RF) and (ii) backwards-stepwise, linear multiple regression (LMR). We utilized an existing experiment in Pinus taeda L. plantations including multiple planting densities, genotypes and silvicultural levels. While the tree planting density did affect the correct delineation of ITCs, between 61% and 99% (mean 86%) were correctly linked to the planting location. The most accurate RF and LMR models all included metrics related to ITC size and competitive neighbourhood. The DBH estimates from RF and LMR were similar: RMSE 3.05 and 3.13 cm (R2 0.64 and 0.62), respectively. Estimates of SV from RF were slightly better than for LMR: RMSE 0.06 and 0.07 m3 (R2 0.77 and 0.70), respectively. Our results provide evidence that ITC size and competition index metrics may improve DBH and SV estimation accuracy when analysing laser-scanning data. The ability to provide accurate, and near-complete, forest inventories holds a great deal of potential for forest management planning.pt_BR
dc.languageen_USpt_BR
dc.publisherTaylor and Francis Onlinept_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Journal of Remote Sensingpt_BR
dc.titleEstimation of individual stem volume and diameter from segmented UAV laser scanning datasets in Pinus taeda L. plantationspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.