Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58608
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantos, Herbert Stein Pereira Torres-
dc.creatorCirillo, Marcelo Angelo-
dc.creatorBorém, Flávio Meira-
dc.creatorFernández, Diana Del Rocío Rebaza-
dc.date.accessioned2023-11-27T19:14:18Z-
dc.date.available2023-11-27T19:14:18Z-
dc.date.issued2023-
dc.identifier.citationSANTOS, H. S. P. T. et al. Nonlinear canonical correspondence analysis: description of the data of coffee. Semina: Ciências Exatas e Tecnológicas, [S.l.], 44, 2023.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58608-
dc.description.abstractThe formulation of coffee blends is of paramount importance for the coffee industry, as it provides the product with an expressive ability to compete in the market and adds sensory attributes that complement the consumption experience. Through redundancy analysis and canonical correspondence analysis, it is possible to study the relationships between a set of sensory notes and a set of blends with different proportions of coffee variety through multivariate linear regression models. However, it is unrealistic to assume that such sensory responses are given linearly in relation to the formulation of the blends, since some coffee species have greater weight in the sensory evaluation (quadratic terms) and the effect of the mixtures (term of interaction). With this motivation, this work aims to propose the use of redundancy analysis and nonlinear correspondence analysis through multivariate polynomial regression to evaluate the acceptance of different varieties of coffee blends according to the scores given by the evaluators. Finally, it is concluded that there were gains in the percentage of total explained variance in the polynomial models in relation to the classic models.pt_BR
dc.languageen_USpt_BR
dc.publisherUniversidade Estadual de Londrinapt_BR
dc.rightsacesso abertopt_BR
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceSemina: Ciências Exatas e Tecnológicaspt_BR
dc.subjectSpecialty coffeespt_BR
dc.subjectCommercial coffeept_BR
dc.subjectMultivariate polynomial regressionpt_BR
dc.subjectAppraiserspt_BR
dc.subjectBlendspt_BR
dc.subjectCafés especiaispt_BR
dc.subjectCafé comercialpt_BR
dc.subjectRegressão polinomial multivariadapt_BR
dc.titleNonlinear canonical correspondence analysis: description of the data of coffeept_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Nonlinear canonical correspondence analysis: description of the data of coffee.pdf865,42 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons