Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/55968
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPierangeli, Luiza Maria Pereira-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorTeixeira, Anita Fernanda dos Santos-
dc.creatorMancini, Marcelo-
dc.creatorAndrade, Renata-
dc.creatorMenezes, Michele Duarte de-
dc.creatorMarques, João José-
dc.creatorWeindorf, David C.-
dc.creatorCuri, Nilton-
dc.date.accessioned2023-02-08T13:01:37Z-
dc.date.available2023-02-08T13:01:37Z-
dc.date.issued2022-10-31-
dc.identifier.citationPIERANGELI, L. M. P. et al. Combining proximal and remote sensors in spatial prediction of five micronutrients and soil texture in a case study at farmland scale in southeastern Brazil. Agronomy, [S.l.], v. 12, n. 11, p. 1-18, Oct. 2022. DOI: 10.3390/agronomy12112699.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/55968-
dc.description.abstractDespite the increasing adoption of proximal sensors worldwide, rare works have coupled proximal with remotely sensed data to spatially predict soil properties. This study evaluated the contribution of proximal and remotely sensed data to predict soil texture and available contents of micronutrients using portable X-ray fluorescence (pXRF) spectrometry, magnetic susceptibility (MS), and terrain attributes (TA) via random forest algorithm. Samples were collected in Brazil from soils with high, moderate, and low weathering degrees (Oxisols, Ultisols, Inceptisols, respectively), and analyzed by pXRF and MS and for texture and available micronutrients. Seventeen TA were generated from a digital elevation model of 12.5 m spatial resolution. Predictions were made via: (i) TA; (ii) TA + pXRF; (iii) TA + MS; (iv) TA + MS + pXRF; (v) MS + pXRF; and (vi) pXRF; and validated via root mean square error (RMSE) and coefficient of determination (R2). The best predictions were achieved by: pXRF dataset alone for available Cu (R² = 0.80) and clay (R2 = 0.67) content; MS + pXRF dataset for available Fe (R2 = 0.68) and sand (R2 = 0.69) content; TA + pXRF + MS dataset for available Mn (R2 = 0.87) content. PXRF data were key to the best predictions. Soil property maps created from these predictions supported the adoption of sustainable soil management practices.pt_BR
dc.languageen_USpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)pt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAgronomypt_BR
dc.subjectDigital soil mappingpt_BR
dc.subjectpXRFpt_BR
dc.subjectTerrain attributespt_BR
dc.subjectTropical soilspt_BR
dc.subjectOxisolspt_BR
dc.subjectUltisolspt_BR
dc.subjectInceptisolspt_BR
dc.subjectRandom forestpt_BR
dc.subjectPortable X-ray fluorescence (pXRF)pt_BR
dc.titleCombining proximal and remote sensors in spatial prediction of five micronutrients and soil texture in a case study at farmland scale in southeastern Brazilpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos



Este item está licenciada sob uma Licença Creative Commons Creative Commons