Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/55407
Full metadata record
DC FieldValueLanguage
dc.creatorRabêlo, Flávio Henrique Silveira-
dc.creatorSantos, Felipe Hipólito dos-
dc.creatorLavres, José-
dc.creatorAlleoni, Luís Reynaldo Ferracciú-
dc.date.accessioned2022-11-03T22:06:39Z-
dc.date.available2022-11-03T22:06:39Z-
dc.date.issued2022-
dc.identifier.citationRABÊLO, F. H. S. et al. Changes in tillering, nutritional status and biomass yield of Panicum maximum used for cadmium phytoextraction. Water, Air, & Soil Pollution, [S.l.], v. 233, 2022.pt_BR
dc.identifier.urihttps://link.springer.com/article/10.1007/s11270-022-05687-6pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/55407-
dc.description.abstractAlthough several grasses have been evaluated for cadmium (Cd) phytoextraction, there are few studies assessing how Cd is accumulated and distributed in the tissues of Panicum maximum grown in mildly spiked soils. The evaluation of tillering, nutritional status and biomass yield of this grass, mainly along successive shoot regrowths, is not well studied so far. Thus, P. maximum Jacq. cv. Massai was grown for two periods in an Oxisol presenting bioavailable Cd concentrations varying from 0.04 (control) to 10.91 mg kg−1 soil. Biomass yield of leaves and stems’ growth has decreased under the highest Cd exposure, but it did not occur in the regrowth period, indicating that Cd-induced toxicity is stronger in the early stages of development of P. maximum. The tillering was not compromised even the basal node presenting Cd concentrations higher than 100 mg kg−1 DW. We identified a restriction on Cd transport upwards from basal node, which was the main localization of Cd accumulation. Apparently, P, K, Mg, S and Cu are involved in processes that restrict Cd translocation and confer high tolerance to Cd in P. maximum. The Cd-induced nutritional disorders did not negatively correlate with factors used to calculate phytoextraction efficiency. However, the nutritional adjustments of P. maximum to cope with Cd stress restricted the upward Cd transport, which decreased the phytoextraction efficiency from the available Cd concentration of 5.93 mg kg−1 soil.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceWater, Air, & Soil Pollutionpt_BR
dc.subjectCadmium toxicitypt_BR
dc.subjectGrowth of grassespt_BR
dc.subjectNutritional disorderspt_BR
dc.subjectPoaceaept_BR
dc.subjectOxisolpt_BR
dc.titleChanges in tillering, nutritional status and biomass yield of Panicum maximum used for cadmium phytoextractionpt_BR
dc.typeArtigopt_BR
Appears in Collections:DCS - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.