Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/55353
Full metadata record
DC FieldValueLanguage
dc.creatorCarrillo Melgarejo, Dick-
dc.creatorPokorny, Jiri-
dc.creatorSeda, Pavel-
dc.creatorNarayanan, Arun-
dc.creatorNardelli, Pedro H. J.-
dc.creatorRasti, Mehdi-
dc.creatorHosek, Jiri-
dc.creatorSeda, Milos-
dc.creatorRodríguez, Demóstenes Z.-
dc.creatorKoucheryavy, Yevgeni-
dc.creatorFraidenraich, Gustavo-
dc.date.accessioned2022-10-27T22:26:28Z-
dc.date.available2022-10-27T22:26:28Z-
dc.date.issued2022-05-
dc.identifier.citationCARRILLO MELGAREJO, D. et al. Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access, [S.I.], p. 53746-53760, 2022. DOI: 10.1109/ACCESS.2022.3175487.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/55353-
dc.description.abstractThe application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework.pt_BR
dc.languageen_USpt_BR
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)pt_BR
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Accesspt_BR
dc.subjectFlying base stationspt_BR
dc.subjectUnmanned aerial vehicles (UAVs)pt_BR
dc.subjectLocation optimizationpt_BR
dc.subjectWireless communicationpt_BR
dc.subjectDeep-reinforcement learningpt_BR
dc.subjectEstações-bases voadoraspt_BR
dc.subjectVeículos aéreos não tripulados (VANTs)pt_BR
dc.subjectComunicações sem fiopt_BR
dc.subjectAprendizagem por reforço profundopt_BR
dc.titleOptimizing flying base station connectivity by RAN slicing and reinforcement learningpt_BR
dc.typeArtigopt_BR
Appears in Collections:DCC - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons

Admin Tools