Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/55343
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Oliveira, S. L. Gonzaga de | - |
dc.creator | Carvalho, C. | - |
dc.date.accessioned | 2022-10-26T19:28:12Z | - |
dc.date.available | 2022-10-26T19:28:12Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | OLIVEIRA, S. L. G. de; CARVALHO, C. Metaheuristic algorithms for the bandwidth reduction of large-scale matrices. Journal of Combinatorial Optimization, Boston, v. 43, p. 727–784, 2022. DOI: 10.1007/s10878-021-00801-6. | pt_BR |
dc.identifier.uri | https://doi.org/10.1007/s10878-021-00801-6 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/55343 | - |
dc.description.abstract | This paper considers the bandwidth reduction problem for large-scale sparse matrices in serial computations. A heuristic for bandwidth reduction reorders the rows and columns of a given sparse matrix. Thus, the method places entries with a nonzero value as close to the main diagonal as possible. Bandwidth optimization is a critical issue for many scientific and engineering applications. This manuscript proposes two heuristics for the bandwidth reduction of large-scale matrices. The first is a variant of the Fast Node Centroid Hill-Climbing algorithm, and the second is an algorithm based on the iterated local search metaheuristic. This paper then experimentally compares the solutions yielded by the new reordering algorithms with the bandwidth solutions delivered by state-of-the-art heuristics for the problem, including tests on large-scale problem matrices. A considerable number of results for a range of realistic test problems showed that the performance of the two new algorithms compared favorably with state-of-the-art heuristics for bandwidth reduction. Specifically, the variant of the Fast Node Centroid Hill-Climbing algorithm yielded the overall best bandwidth results. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Journal of Combinatorial Optimization | pt_BR |
dc.subject | Bandwidth reduction | pt_BR |
dc.subject | Heuristics | pt_BR |
dc.subject | Sparse matrices | pt_BR |
dc.subject | Reordering algorithms | pt_BR |
dc.subject | Metaheuristics | pt_BR |
dc.subject | Graph algorithm | pt_BR |
dc.subject | Iterated local search | pt_BR |
dc.subject | Redução da largura de banda | pt_BR |
dc.subject | Heurística | pt_BR |
dc.subject | Matrizes esparsas | pt_BR |
dc.subject | Metaheurísticas | pt_BR |
dc.subject | Algoritmo de gráfico | pt_BR |
dc.subject | Algoritmos de reordenação | pt_BR |
dc.subject | Pesquisa local iterada | pt_BR |
dc.title | Metaheuristic algorithms for the bandwidth reduction of large-scale matrices | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCC - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.
Ferramentas do administrador