Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/55340
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDasgupta, Shubhadip-
dc.creatorChakraborty, Somsubhra-
dc.creatorWeindorf, David C.-
dc.creatorLi, Bin-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorBhattacharyya, Kallol-
dc.date.accessioned2022-10-25T21:25:10Z-
dc.date.available2022-10-25T21:25:10Z-
dc.date.issued2022-09-
dc.identifier.citationDASGUPTA, S. et al. Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India. Geoderma Regional, [S. l.], v. 30, e00557, Sept. 2022. DOI: 10.1016/j.geodrs.2022.e00557.pt_BR
dc.identifier.urihttps://doi.org/10.1016/j.geodrs.2022.e00557pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/55340-
dc.description.abstractPortable X-ray fluorescence (PXRF)spectrometry has already been established as a rapid and cost-effective tool for predicting various soil physicochemical properties. This study used PXRF in combination with physiographic, agro-climatic, soil parent-material, and physicochemical attributes (pH, electrical conductivity (EC), loss on ignition organic matter, and organic carbon) as auxiliary properties to predict multiple soil fertility indicators [available K, Ca, Mg, Fe, Cu, Zn, Mn, B, K/Mg ratio, total exchangeable bases (TEB), and sulfur availability index (SAI)] via four machine-learning algorithms (random forest, support vector regression, stepwise multiple linear regression, and an averaged model). Principal component analysis (PCA) indicated the links between PXRF-reported elements, agro-climatic zones, and soil parent materials. Although no universal prediction model can be selected to suit all 11 soil fertility parameters, three parameters (available Ca, Fe, and TEB) produced reasonable model performance with an R2 > 0.50 for most prediction model-dataset combinations. Concatenation of auxiliary soil parameters with PXRF data showed relative improvement in model accuracy compared to PXRF in isolation. Notably, the agro-climatic zone appeared influential for predicting available K, Mg, Zn, Fe, Mn, B, K/Mg ratio, and TEB. For potential fertilizer recommendation, six parameters (available K, Ca, Mg, Cu, Mn, and B) produced reasonable classification performance via the averaged model using all auxiliary predictors (κ > 0.30). The same categorical model was used, as an instance, for delineating a conceptualized framework for (PXRF+ auxiliary properties)-based fertilizer recommendation facilitating site-specific nutrient management. More research is needed to enhance model prediction/classification accuracy by including a well-balanced dataset and other relevant auxiliary variables with PXRF. Nevertheless, the importance of adding auxiliary soil properties with PXRF elemental data for cost-effective and accessible nutrient management in resource-poor countries seems promising.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeoderma Regionalpt_BR
dc.subjectSoil fertilitypt_BR
dc.subjectEntisolspt_BR
dc.subjectInceptisolspt_BR
dc.subjectRandom forestpt_BR
dc.subjectSupport vector regressionpt_BR
dc.subjectFertilizer recommendationpt_BR
dc.subjectFertilidade do solopt_BR
dc.subjectEntissolospt_BR
dc.subjectInceptissolospt_BR
dc.subjectRegressão de vetor de suportept_BR
dc.subjectRecomendação de fertilizantespt_BR
dc.titleInfluence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in Indiapt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.