Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/55129
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSouza, Jarlyson Brunno Costa-
dc.creatorAlmeida, Samira Luns Hatum de-
dc.creatorOliveira, Mailson Freire de-
dc.creatorSantos, Adão Felipe dos-
dc.creatorBrito Filho, Armando Lopes de-
dc.creatorMeneses, Mariana Dias-
dc.creatorSilva, Rouverson Pereira da-
dc.date.accessioned2022-09-19T19:05:14Z-
dc.date.available2022-09-19T19:05:14Z-
dc.date.issued2022-06-
dc.identifier.citationSOUZA, J. B. C. et al. Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks. Agronomy, Basel, v. 12, n. 7, 2022. DOI: https://doi.org/10.3390/agronomy12071512.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/55129-
dc.description.abstractThe monitoring and determination of peanut maturity are fundamental to reducing losses during digging operation. However, the methods currently used are laborious and subjective. To solve this problem, we developed models to access peanut maturity using images from unmanned aerial vehicles (UAV) and satellites. We evaluated an area of approximately 8 hectares in which a regular grid of 30 points was determined with weekly evaluations starting at 90 days after sowing. Two Artificial Neural Networking (ANN) were used with Radial Basis Function (RBF) and Multilayer Perceptron (MLP) to predict the Peanut Maturity Index (PMI) with the spectral bands available from each sensor. Several vegetation indices were used as input to the ANN, with the data being split 80/20 for training and validation, respectively. The vegetation index, Normalized Difference Red Edge Index (NDRE), was the most precise coefficient of determination (R2 = 0.88) and accurate mean absolute error (MAE = 0.06) for estimating PMI, regardless of the type of ANN used. The satellite with Normalized Difference Vegetation Index (NDVI) could also determine PMI with better accuracy (MAE = 0.05) than the NDRE. The performance evaluation indicates that the RBF and MLP networks are similar in predicting peanut maturity. We concluded that satellite and UAV images can predict the maturity index with good accuracy and precision.pt_BR
dc.languageenpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute - MDPIpt_BR
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAgronomypt_BR
dc.subjectPlanetScopept_BR
dc.subjectUnmanned aerial vehiclept_BR
dc.subjectMachine learningpt_BR
dc.subjectMultilayer Perceptronpt_BR
dc.subjectRadial Basis Functionpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectVeículo aéreo não tripuladopt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectPerceptron Multicamadaspt_BR
dc.subjectFunção de base radialpt_BR
dc.titleIntegrating satellite and UAV data to predict peanut maturity upon artificial neural networkspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DAG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Integrating Satellite and UAV Data to Predict Peanut Maturity upon Artificial Neural Networks.pdf3,17 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons