Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/53311
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLacerda, Talles Hudson Souza-
dc.creatorMiranda, Evandro Nunes-
dc.creatorLopes, Isáira Leite e-
dc.creatorFonseca, Guilherme Rodrigues-
dc.creatorFrança, Luciano Cavalcante de Jesus-
dc.creatorGomide, Lucas Rezende-
dc.date.accessioned2022-08-18T16:53:25Z-
dc.date.available2022-08-18T16:53:25Z-
dc.date.issued2022-05-
dc.identifier.urihttps://cdnsciencepub.com/doi/10.1139/cjfr-2021-0265pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/53311-
dc.description.abstractTree stem profile results from a complex structure of shapes and dimensions determined by ecological processes within the forest. However, the feature selection in the development of taper models has been underinvestigated to date. We propose a genetic algorithm (GA) to assess factors that affect the stem taper and volume of Eucalyptus urograndis trees at different ages (2, 7, and 14 years) in Brazil. A total of 213 sample trees were measured in diameter and height along the stem, crown width, crown base height, crown length, and crown ratio. These variables and the stand age were supplied to the GA that selects variables, replacing those of Kozak’s 2004 model. The performance of models was evaluated using error statistics and residual plots. The GA model was efficient in predicting diameters and volumes, mainly by increasing the accuracy of the estimates in the extreme portions of the trees. This was attributed to the selection of morphometric variables as predictors of stem taper and volume, making them understandable in ecological terms. We highlight GA as a robust tool, since it incorporated the morphometric variables in Kozak’s model that contribute to the estimates.pt_BR
dc.languageen_USpt_BR
dc.publisherCanadian Science Publishing (CSP)pt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceCanadian Journal of Forest Researchpt_BR
dc.subjectGenetic algorithm (GA)pt_BR
dc.subjectEucalyptus urograndispt_BR
dc.subjectKozak’s modelpt_BR
dc.titleFeature selection by genetic algorithm in nonlinear taper modelpt_BR
dc.typeArtigopt_BR
dc.description.resumoLACERDA, T. H. S. et al. Feature selection by genetic algorithm in nonlinear taper model. Canadian Journal of Forest Research, [S.l.], v. 52, n. 5, p. 1-11, May 2022. DOI: 10.1139/cjfr-2021-0265.pt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.