Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50863
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDantas, Daniel-
dc.date.accessioned2022-08-05T22:04:33Z-
dc.date.available2022-08-05T22:04:33Z-
dc.date.issued2022-08-05-
dc.date.submitted2022-07-13-
dc.identifier.citationDANTAS, D. Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques. 2022. 110 p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2022.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50863-
dc.description.abstractForests provide numerous ecosystem services, such as regulation of biogeochemical cycles, pollution control, food supply and the sequestration and storage of atmospheric carbon. These services are crucial, as they act directly in the mitigation of global warming and are of strategic importance in mitigating climate change. In this context, the quantification of the carbon stock present in the most varied types of forests constitutes an important tool for monitoring this ecosystem service. The estimation of carbon stock by indirect methods makes use of modeling and simulation techniques. Historically, the modeling of forest attributes has relied on approaches based on statistical models. These approaches now share space with computational approaches of artificial intelligence/machine learning, such as artificial neural networks, support vector machines, decision trees, among others, which have been gaining ground as tools for forest data analysis, modeling, estimation of variables and production prognosis. These tools have provided gains in the quality of estimates and predictions. In this work, we analyzed the spatial distributions of the carbon stock in a tropical forest and evaluated the performance of models extracted from artificial intelligence techniques to model the carbon stock in tropical forests; in addition to the use of artificial intelligence and mixed models with the adoption of a structure in the variance and covariance matrix for volumetric estimates. The total estimated carbon stock was 267.52 Mg·ha-1 , of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors. The techniques performed satisfactorily in modeling, with homogeneous distributions and low dispersion of residuals. The quality analysis criteria indicated the superior performance of the mixed model with a Huynh- Feldt structure of the variance and covariance matrix, which showed a decrease in mean relative error from 13.52% to 2.80%, whereas machine learning techniques had error values of 6.77% (SVM) and 5.81% (ANN). This study confirms that although fixed-effects models are widely used in the Brazilian forest sector, there are more effective methods for modeling dendrometric variables.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectMáquina de vetor de suportept_BR
dc.subjectModelos não-linearespt_BR
dc.subjectModelos de efeitos mistospt_BR
dc.subjectGeoestatísticapt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectSupport vector machinept_BR
dc.subjectNonlinear modelspt_BR
dc.subjectMixed modelspt_BR
dc.subjectGeostatisticspt_BR
dc.titleModeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniquespt_BR
dc.title.alternativeModelagem e análise espacial do estoque de carbono e de atributos florestais por meio de modelos de efeitos mistos e técnicas de inteligência artificialpt_BR
dc.typetesept_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Florestalpt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Calegario, Natalino-
dc.contributor.referee1Barbosa, Gabriela Paranhos-
dc.contributor.referee2Terra, Marcela de Castro Nunes Santos-
dc.contributor.referee3Hein, Paulo Ricardo Gherardi-
dc.contributor.referee4Melo, Elliezer de Almeida-
dc.contributor.referee5Rocha, Samuel José Silva Soares da-
dc.description.resumoFlorestas proveem inúmeros serviços ecossistêmicos, como regulação de ciclos biogeoquímicos, controle de poluição, fornecimento de alimentos e o sequestro e estocagem de carbono atmosférico. Esses serviços são cruciais, pois atuam diretamente na mitigação do aquecimento global, sendo de importância estratégica na amenização das mudanças climáticas. Nesse contexto, a quantificação do estoque de carbono presente nos mais variados tipos de florestas, constitui uma ferramenta importante de monitoramento desse serviço ecossistêmico. A estimativa de estoque de carbono por métodos indiretos faz uso de técnicas de modelagem e simulação. Historicamente, a modelagem de atributos florestais se apoiou em abordagens fundamentadas em modelos estatísticos. Essas abordagens dividem hoje espaço com abordagens computacionais de inteligência artificial/aprendizagem de máquina, como redes neurais artificiais, máquinas de vetores de suporte, árvores de decisão, dentre outras, as quais vêm ganhando espaço como ferramentas de análise de dados florestais, modelagem, estimativa de variáveis e prognose da produção. Essas ferramentas têm proporcionado ganhos na qualidade das estimativas e predições. Neste trabalho foram analisadas as distribuições espaciais do estoque de carbono em uma floresta tropical e avaliados os desempenhos de modelos extraídos de técnicas de inteligência artificial para modelar o estoque de carbono em florestas tropicais; além do uso de inteligência artificial e modelos mistos com adoção de estrutura na matriz de variância e covariância para estimativas volumétricas. O estoque total de carbono estimado foi de 267,52 Mg·ha-1 , sendo 35,23% na biomassa aérea, 63,22% no solo e 1,54% nas raízes. No solo, repetiu-se um padrão espacial do estoque de carbono em todas as profundidades analisadas, com redução da quantidade de carbono à medida que a profundidade aumentava. O estoque de carbono das árvores seguiu o mesmo padrão espacial do solo, indicando uma relação entre essas variáveis. Nas raízes finas, o estoque de carbono diminuiu com o aumento da profundidade, mas o gradiente espacial não seguiu o mesmo padrão do solo e das árvores, o que indicou que o estoque de carbono radicular foi influenciado por outros fatores. As técnicas funcionaram satisfatoriamente na modelagem, com distribuições homogêneas e baixa dispersão dos resíduos. Os critérios de análise de qualidade indicaram o desempenho superior do modelo misto com estrutura Huynh-Feldt da matriz de variância e covariância, que apresentou uma diminuição do erro relativo médio de 13,52% para 2,80%, enquanto as técnicas de aprendizado de máquina tiveram valores de erro de 6,77%. (SVM) e 5,81% (RNA). Este estudo confirma que, embora os modelos de efeitos fixos sejam amplamente utilizados no setor florestal brasileiro, existem métodos mais eficazes para a modelagem de variáveis dendrométricas.pt_BR
dc.publisher.departmentDepartamento de Ciências Florestaispt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3905001239237950pt_BR
Aparece nas coleções:Engenharia Florestal - Doutorado (Teses)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.