Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50685
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLima, Helen C. S. C.-
dc.creatorOtero, Fernando E. B.-
dc.creatorMerschmann, Luiz H. C.-
dc.creatorSouza, Marcone J. F.-
dc.date.accessioned2022-07-21T21:55:50Z-
dc.date.available2022-07-21T21:55:50Z-
dc.identifier.citationLIMA, H. C. S. C. et al. A novel hybrid feature selection algorithm for hierarchical classification. IEEE Access, [S. l.], v. 9, p. 127278-127292, 202. DOI: 10.1109/ACCESS.2021.3112396.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50685-
dc.description.abstractFeature selection is a widespread preprocessing step in the data mining field. One of its purposes is to reduce the number of original dataset features to improve a predictive model’s performance. Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies in the literature address feature selection for the hierarchical classification context. This paper proposes a novel feature selection method based on the general variable neighborhood search metaheuristic, combining a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used twelve datasets from the proteins and images domains to perform computational experiments to validate the effect of the proposed algorithm on classification performance when using two global hierarchical classifiers proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive performances that were consistently better than or equivalent to that obtained by using all features with the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical classification scenario.pt_BR
dc.languageen_USpt_BR
dc.publisherIEEE Xplorept_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Accesspt_BR
dc.subjectFeature selectionpt_BR
dc.subjectHierarchical single-label classificationpt_BR
dc.subjectVariable neighborhood searchpt_BR
dc.subjectWrapperpt_BR
dc.subjectSeleção de recursospt_BR
dc.subjectClassificação hierárquica de rótulo únicopt_BR
dc.subjectPesquisa variável de vizinhançapt_BR
dc.titleA novel hybrid feature selection algorithm for hierarchical classificationpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_A novel hybrid feature selection algorithm for hierarchical classification.pdf4,38 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador