Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50606
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDuarte, Victor Braga Rodrigues-
dc.creatorViola, Marcelo Ribeiro-
dc.creatorGiongo, Marcos-
dc.creatorUliana, Eduardo Morgan-
dc.creatorMello, Carlos Rogério de-
dc.date.accessioned2022-07-14T21:00:35Z-
dc.date.available2022-07-14T21:00:35Z-
dc.date.issued2022-04-
dc.identifier.citationDUARTE, V. B. R. et al. Streamflow forecasting in Tocantins river basins using machine learning. Water Supply, London, v. 22, n. 7, p. 6230–6244, 2022. DOI: 10.2166/ws.2022.155.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50606-
dc.description.abstractUnderstanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. Therefore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms, and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.pt_BR
dc.languageenpt_BR
dc.publisherIWA Publishingpt_BR
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater Supplypt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectFeature selectionpt_BR
dc.subjectHydrological forecastingpt_BR
dc.subjectHydrologypt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectPrevisão hidrológicapt_BR
dc.subjectHidrologiapt_BR
dc.subjectBacias hidrográficas - Vazãopt_BR
dc.titleStreamflow forecasting in Tocantins river basins using machine learningpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos
DRH - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Streamflow forecasting in Tocantins river basins using machine learning.pdf744,42 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons