Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50532
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMattos, Denise de-
dc.creatorSantos, Edivaldo L. dos-
dc.creatorSilva, Nelson Antonio-
dc.date.accessioned2022-07-08T21:18:58Z-
dc.date.available2022-07-08T21:18:58Z-
dc.date.issued2021-04-15-
dc.identifier.citationMATTOS, D. de; SANTOS, E. L. dos; SILVA, N. A. On the length of cohomology spheres. Topology and its Applications, Amsterdam, v. 239, 107569, 15 Abr. 2021. DOI: 10.1016/j.topol.2020.107569.pt_BR
dc.identifier.urihttps://doi.org/10.1016/j.topol.2020.107569pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50532-
dc.description.abstractIn [2], T. Bartsch provided detailed and broad exposition of a numerical cohomological index theory for G-spaces, known as the length, where G is a compact Lie group. We present the length of G-spaces which are cohomology spheres and G is a p-torus or a torus group, where p is a prime. As a consequence, we obtain Borsuk-Ulam and Bourgin-Yang type theorems in this context. A sharper version of the Bourgin-Yang theorem for topological manifolds is also proved. Also, we give some general results regarding the upper and lower bound for the length.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceTopology and its Applicationspt_BR
dc.subjectCohomological lengthpt_BR
dc.subjectCohomology spherespt_BR
dc.subjectBorsuk-Ulam theorempt_BR
dc.subjectBourgin-Yang theorempt_BR
dc.subjectEquivariant mappt_BR
dc.subjectComprimento cohomológicopt_BR
dc.subjectEsferas de cohomologiapt_BR
dc.subjectTeorema de Borsuk-Ulampt_BR
dc.subjectTeorema de Bourgin-Yangpt_BR
dc.subjectMapa equivalentept_BR
dc.titleOn the length of cohomology spherespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.