Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50511
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Douglas H.-
dc.creatorMaziero, Erick G.-
dc.creatorSaadi, Muhammad-
dc.creatorRosa, Renata L.-
dc.creatorSilva, Juan C.-
dc.creatorRodriguez, Demostenes Z.-
dc.creatorIgorevich, Kostromitin K.-
dc.date.accessioned2022-07-08T15:29:19Z-
dc.date.available2022-07-08T15:29:19Z-
dc.date.issued2022-01-10-
dc.identifier.citationSILVA, D. H. et al. Big data analytics for critical information classification in online social networks using classifier chains. Peer-to-Peer Networking and Applications, [S.l.], v. 15, p. 626-641, Jan. 2022. DOI: 10.1007/s12083-021-01269-1.pt_BR
dc.identifier.urihttps://link.springer.com/article/10.1007/s12083-021-01269-1pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50511-
dc.description.abstractIndustrial and academic organizations are using online social network (OSN) for different purposes, such as social and economic aspects. Now, OSN is a new mean of obtaining information from people about their preferences, and interests. Due to the large volume of user-generated content, researchers use various techniques, such as sentiment analysis or data mining to evaluate this information automatically. However, the sentiment analysis of OSN content is performed by different methods, but there are some problems to obtain highly reliable results, mainly because of the lack of user profile information, such as gender and age. In this work, a novel dataset is built, which contains the writing characteristics of 160,000 users of the Twitter OSN. Before creating classification models with Machine Learning (ML) techniques, feature transformation and feature selection methods are applied to determine the most relevant set of characteristics. To create the models, the Classifier Chain (CC) transformation technique and different machine learning algorithms are applied to the training set. Simulation results show that the Random Forest, XGBoost and Decision Tree algorithms obtain the best performance results. In the testing phase, these algorithms reached Hamming Loss values of 0.033, 0.033, and 0.034, respectively, and all of them reached the same F1 micro-average value equal to 0.976. Therefore, our proposal based on a multidimensional learning technique using CC transformation overcomes other similar proposals.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePeer-to-Peer Networking and Applicationspt_BR
dc.subjectBig datapt_BR
dc.subjectAge-group classifierpt_BR
dc.subjectGender classifierpt_BR
dc.subjectFeature selectionpt_BR
dc.subjectFeature transformationpt_BR
dc.subjectMulti-label classificationpt_BR
dc.titleBig data analytics for critical information classification in online social networks using classifier chainspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador