Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49908
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAlves, Marcelo de Carvalho-
dc.creatorPozza, Edson Ampélio-
dc.creatorSanches, Luciana-
dc.creatorBelan, Leonidas Leoni-
dc.creatorFreitas, Marcelo Loran de Oliveira-
dc.date.accessioned2022-05-10T19:06:31Z-
dc.date.available2022-05-10T19:06:31Z-
dc.date.issued2021-10-
dc.identifier.citationALVES, M. C. de et al. Insights for improving bacterial blight management in coffee field using spatial big data and machine learning. Tropical Plant Pathology, [S.I.], v. 47, p. 118-139, Feb. 2022. DOI: https://doi.org/10.1007/s40858-021-00474-w.pt_BR
dc.identifier.urihttps://doi.org/10.1007/s40858-021-00474-wpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49908-
dc.description.abstractPseudomonas syringae pv. garcae, the causal agent of coffee disease bacterial blight, causes losses in nurseries and coffee fields. In this work, the objective was to evaluate integrated bacterial blight management in a coffee (Coffea arabica L.) field based on disease spatial pattern and ecological variables. The coffee field was composed by 85 georeferenced sample points, containing 5 plants representing a georeferenced point, being the spatial support of the experiment. Disease intensity classes were predicted in the field by machine learning algorithms fitted to big data on surface reflectance and spectral indices derived from digital image processing of Landsat-8 OLI/TIRS, as well as morphometric and hydrological attributes determined by geocomputation algorithms. Geostatistical modeling was used to characterize the spatial pattern and map the disease to gain epidemiological knowledge and precisely manage bacterial blight. Random forest algorithm enabled to detect the importance of relief morphometry associated with bacterial blight spatial progress in the coffee field, mainly according to the altitude and flow line curvature of the terrain. Probabilistic information on disease spatial pattern, modeled considering external trend effects of the topography variation, can be useful information for disease spatial prediction and integrated management based on georeferenced disease sampling. Multiple environmental variables may be carefully considered to evaluate mechanisms of interactions of bacterial blight with coffee plants and the physical environment.pt_BR
dc.languageenpt_BR
dc.publisherSpringer Naturept_BR
dc.rightsrestrictAccesspt_BR
dc.sourceTropical Plant Pathologypt_BR
dc.subjectPseudomonas syringae pv. garcaept_BR
dc.subjectEpidemiologypt_BR
dc.subjectBig datapt_BR
dc.subjectGeostatisticspt_BR
dc.subjectMachine learningpt_BR
dc.subjectGeocomputationpt_BR
dc.subjectMancha aureolada do cafeeiropt_BR
dc.subjectEpidemiologiapt_BR
dc.subjectGeoestatísticapt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectGeocomputaçãopt_BR
dc.titleInsights for improving bacterial blight management in coffee field using spatial big data and machine learningpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DFP - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador