Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49824
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMilitani, Davi Ribeiro-
dc.creatorMoraes, Hermes Pimenta de-
dc.creatorRosa, Renata Lopes-
dc.creatorWuttisittikulkij, Lunchakorn-
dc.creatorArjona Ramírez, Miguel-
dc.creatorRodríguez, Demóstenes Zegarra-
dc.date.accessioned2022-04-28T21:47:07Z-
dc.date.available2022-04-28T21:47:07Z-
dc.date.issued2021-01-
dc.identifier.citationMILITANI, D. R. et al. Enhanced Routing Algorithm Based on Reinforcement Machine Learning: A Case of VoIP Service. Sensors, [S. I.], v. 21, n. 2, 2021. DOI: 10.3390/s21020504.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49824-
dc.description.abstractThe routing algorithm is one of the main factors that directly impact on network performance. However, conventional routing algorithms do not consider the network data history, for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on machine learning present advantages using that network data. Nevertheless, in a routing algorithm based on reinforcement learning (RL) technique, additional control message headers could be required. In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is implemented to compensate the overhead generated by the use of RL. Different network scenarios with variable number of nodes, routes, traffic flows and degree of mobility are implemented, in which network parameters, such as packet loss, delay, throughput and overhead are obtained. Additionally, a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model algorithm is used to predict the communication quality. For performance comparison, the OLSR, BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both network parameters and VoIP quality.pt_BR
dc.languageenpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute - MDPIpt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSensorspt_BR
dc.subjectRouting algorithmspt_BR
dc.subjectMachine learningpt_BR
dc.subjectReinforcement learningpt_BR
dc.subjectIntelligent routingpt_BR
dc.subjectVoIPpt_BR
dc.subjectQoEpt_BR
dc.subjectAlgoritmos de roteamentopt_BR
dc.subjectAprendizagem de máquinapt_BR
dc.subjectRoteamento inteligentept_BR
dc.titleEnhanced Routing Algorithm Based on Reinforcement Machine Learning: A Case of VoIP Servicept_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Enhanced Routing Algorithm Based on Reinforcement Machine Learning A Case of VoIP Service.pdf596,47 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador