Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49635
Registro completo de metadados
Campo DCValorIdioma
dc.creatorOliveira, L. L. A. de-
dc.creatorTravaglia, M. V.-
dc.date.accessioned2022-03-31T12:47:47Z-
dc.date.available2022-03-31T12:47:47Z-
dc.date.issued2021-07-26-
dc.identifier.citationOLIVEIRA, L. L. A. de; TRAVAGLIA, M. V. Optimizing the spring constants of forced, damped and circular spring-mass systems-characterization of the discrete and periodic bi-Laplacian operator. Ima Journal of Applied Mathematics, [S.l.], v. 86, n. 4, p. 785-807, Aug. 2021. DOI: 10.1093/imamat/hxab021.pt_BR
dc.identifier.urihttps://academic.oup.com/imamat/article/86/4/785/6314452pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49635-
dc.description.abstractWe optimize the spring constants ki,j (stiffness) of circular spring-mass systems with nearest-neighbour (NN) and next-nearest-neighbour (NNN) springs only. In this optimization problem, such systems are also subjected to damping and periodic external forces. The function to be minimized is the average ratio of the square norm of the on-site internal forces (response) to the square norm of the external on-site forces (input). Under the average of this response/input ratio is meant the average over time and over all configurations of external forces. As main result, it is established that the optimum stiffness matrix converges to the discrete and periodic bi-Laplacian operator as the size n of the system increases. Such a result is obtained under the following assumptions: (a) the system has the natural mode shape (eigenvector) of alternating 1s and −1s; and (b) the (external) forcing frequency is at least 1.095 times higher than the highest natural frequency. It is remarkable that this optimum stiffness matrix exhibits negative stiffness for the springs linking NNN point masses. More specifically, as n increases, 0>ki,i+2=−14ki,i+1 is the relation between the optimum NNN spring constant and the optimum NN spring constant. Such systems illustrate that the introduction of negative stiffness springs in some specific positions does in fact reduce the average response/input ratio. Numerical tables illustrating the main result are given.pt_BR
dc.languageen_USpt_BR
dc.publisherOxford University Press (OUP)pt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceIma Journal of Applied Mathematicspt_BR
dc.subjectPeriodically forced oscillatorspt_BR
dc.subjectForce transmissibilitypt_BR
dc.subjectCircular spring-mass systemspt_BR
dc.subjectStiffness matrixpt_BR
dc.subjectNegative stiffnesspt_BR
dc.subjectInverse vibration problempt_BR
dc.subjectMinimization problem involving matricespt_BR
dc.subjectCirculant matricespt_BR
dc.subjectAsymptotic limit for matricespt_BR
dc.subjectOne-dimensional discrete bi-harmonic operatorpt_BR
dc.subjectEigenpairpt_BR
dc.subjectTrace Jansen inequalitypt_BR
dc.titleOptimizing the spring constants of forced, damped and circular spring-mass systems-characterization of the discrete and periodic bi-Laplacian operatorpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.