Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49330
Título: Classification of specialty coffees using machine learning techniques
Palavras-chave: Supervised classification
Classification models
Specialty coffees - Sensory analysis
Machine learning
Classificação supervisionada
Modelos de classificação
Cafés especiais - Análise sensorial
Aprendizado de máquina
Data do documento: 2021
Editor: CDRR Editors
Citação: OSSANI, P. C. et al. Classification of specialty coffees using machine learning techniques. Research, Society and Development, [S. l.], v. 10, n. 5, e13110514732, 2021. DOI: 10.33448/rsd-v10i5.14732.
Resumo: Specialty coffees have a big importance in the economic scenario, and its sensory quality is appreciated by the productive sector and by the market. Researches have been constantly carried out in the search for better blends in order to add value and differentiate prices according to the product quality. To accomplish that, new methodologies must be explored, taking into consideration factors that might differentiate the particularities of each consumer and/or product. Thus, this article suggests the use of the machine learning technique in the construction of supervised classification and identification models. In a sensory evaluation test for consumer acceptance using four classes of specialty coffees, applied to four groups of trained and untrained consumers, features such as flavor, body, sweetness and general grade were evaluated. The use of machine learning is viable because it allows the classification and identification of specialty coffees produced in different altitudes and different processing methods.
URI: http://repositorio.ufla.br/jspui/handle/1/49330
Aparece nas coleções:DES - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Classification of specialty coffees using machine learning techniques.pdf330,94 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.