Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49223
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPelegrino, Marcelo Henrique Procópio-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorFaria, Álvaro José Gomes de-
dc.creatorMancini, Marcelo-
dc.creatorTeixeira, Anita Fernanda dos Santos-
dc.creatorChakraborty, Somsubhra-
dc.creatorWeindorf, David C.-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2022-02-08T20:32:39Z-
dc.date.available2022-02-08T20:32:39Z-
dc.date.issued2022-
dc.identifier.citationPELEGRINO, M. H. P. et al. Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area. Precision Agriculture, Dodrecht, v. 23, p. 18-34, 2022. DOI: 10.1007/s11119-021-09825-8.pt_BR
dc.identifier.urihttps://doi.org/10.1007/s11119-021-09825-8pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49223-
dc.description.abstractPrecision agriculture provides detailed information on the spatial variability of soil properties, including nutrient content, allowing for local-specific decision making. Recently, proximal sensors have been used to accurately predict soil properties, contributing to reduce costs of conventional wet-chemistry analyses for soil characterization. However, further investigations on this approach in tropical soils are needed. This work aimed to use portable X-ray fluorescence (pXRF) spectrometry data for prediction of exchangeable Ca2+ and available K+ and P contents in soils of a highly heterogeneous tropical area and evaluating its practical applications. 90 samples from soil A horizon were collected in a regular grid design, and analyzed through pXRF and for nutrient contents. Such data were split into modeling (63 samples) and validation (27 samples) datasets. Linear regression (LR), polynomial regression (PR), power regression (PwR) and stepwise multiple linear regression (SMLR) were tested for predictions. The models were used to spatially represent nutrient contents across the area and to compare the practical effects of varying regression models. PXRF elemental data provided reliable predictions of exchangeable Ca2+ and available P via SMLR and PwR, respectively, reaching root mean square errors (RMSE) of 5.66 cmolc dm−3 for Ca2+ and 9.13 mg dm−3 for P. Available K+ predictions were not successful. Different models yielded contrasting maps showing the classes of soil fertility across the area, drawing attention to the importance of testing multiple prediction models and using the best one for precision agriculture. Fusion of data from different proximal sensors may enhance available K+ predictions.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePrecision Agriculturept_BR
dc.subjectProximal sensorpt_BR
dc.subjectRegression analysispt_BR
dc.subjectSoil fertility spatial predictionpt_BR
dc.subjectRandom forestpt_BR
dc.subjectDigital soil mappingpt_BR
dc.subjectSensor proximalpt_BR
dc.subjectAnálise de regressãopt_BR
dc.subjectMapeamento digital do solopt_BR
dc.titlePrediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical areapt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.