Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/49071
Título: | Including steady-state information in nonlinear models: an application to the development of soft-sensors |
Palavras-chave: | Soft-sensors Artificial neural network Grey-box identification Steady-state information Machine learning Permanent downhole gauge (PDG) Offshore oil platform Artificial intelligence Sensores Virtuais Rede neural artificial Identificação caixa-cinza Estado estacionário Aprendizado de máquina Sensor permanente de fundo de poço Plataformas de petróleo offshore Inteligência artificial |
Data do documento: | Jun-2021 |
Editor: | Elsevier |
Citação: | FREITAS, L.; BARBOSA, B. H. G.; AGUIRRE, L. A. Including steady-state information in nonlinear models: an application to the development of soft-sensors. Engineering Applications of Artificial Intelligence, [S.I.], v. 102, Jun. 2021. DOI: https://doi.org/10.1016/j.engappai.2021.104253. |
Resumo: | When the dynamical data of a system only convey dynamic information over a limited operating range, the identification of models with good performance over a wider operating range is very unlikely. To overcome such a shortcoming, this paper describes a methodology to train models from dynamical data and steady-state information, which is assumed available. The novelty is that the procedure can be applied to models with rather complex structures such as multilayer perceptron neural networks in a bi-objective fashion without the need to compute fixed points neither analytically nor numerically. As a consequence, the required computing time is greatly reduced. The capabilities of the proposed method are explored in numerical examples and the development of soft-sensors for downhole pressure estimation for a real deep-water offshore oil well. The results indicate that the procedure yields suitable soft-sensors with good dynamical and static performance and, in the case of models that are nonlinear in the parameters, the gain in computation time is about three orders of magnitude considering existing approaches. |
URI: | https://doi.org/10.1016/j.engappai.2021.104253 http://repositorio.ufla.br/jspui/handle/1/49071 |
Aparece nas coleções: | DEG - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.