Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/48890
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRibeiro, Michele N.-
dc.creatorCarvalho, Iago A.-
dc.creatorFonseca, Gabriel A.-
dc.creatorLago, Rafael C.-
dc.creatorRocha, Lenízy C. R.-
dc.creatorFerreira, Danton D.-
dc.creatorVilas Boas, Eduardo V. B.-
dc.creatorPinheiro, Ana C. M.-
dc.date.accessioned2022-01-18T21:25:40Z-
dc.date.available2022-01-18T21:25:40Z-
dc.date.issued2021-01-
dc.identifier.citationRIBEIRO, M. N. et al. Quality control of fresh strawberries by a random forest model. Journal of the Science of Food and Agriculture, [S.I.], v. 101, n. 11, p. 4514-4522, Aug. 2021. DOI 10.1002/jsfa.11092.pt_BR
dc.identifier.urihttps://doi.org/10.1002/jsfa.11092pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/48890-
dc.description.abstractBACKGROUND: Strawberry quality is one of the most important factors that guarantees consistent commercialization of the fruit and ensures the consumer's satisfaction. This work makes innovative use of random forest (RF) to predict sensory measures of strawberries using physical and physical-chemical variables. Furthermore, it also employs these same physical and physicalchemical variables to classify strawberries in the classes "satisfied" or "not satisfied" and "would pay more" or "wouldn't pay more. The RF-based model predicts the acceptance, expectation, ideal of sweetness, ideal of acidity, and the ideal of succulence based on the physical and physical-chemical data. Then, the predicted parameters are used as input for the RF-based classification model. RESULTS: The RF achieved a coefficient of determination R2 > 0.72 and a root-mean-squared error (RMSE) smaller than 0.17 for the prediction task, which indicates that one can estimate the sensory measures of strawberries using physical and physical– chemical data. Furthermore, the RF was able to classify 87.95% of the strawberry samples correctly into the classes ‘satisfied’ and ‘not satisfied’ and 78.99% in the classes ‘would pay more’ or ‘would not pay more’. A two-step RF model, which employed both physical and physical–chemical data to classify strawberry samples regarding the consumer's response also correctly classified 100% and 90.32% of the samples with respect to consumers’ satisfaction and their willingness to pay more, respectively. CONCLUSION: The results indicate that the developed models can be used in the quality control of strawberries, supporting the establishment of quality standards that consider the consumer's response. The proposed methodology can be extended to control the sensory quality of other fruits.pt_BR
dc.languageenpt_BR
dc.publisherSociety of Chemical Industrypt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceJournal of the Science of Food and Agriculturept_BR
dc.subjectStrawberrypt_BR
dc.subjectSensory responsept_BR
dc.subjectRegressionpt_BR
dc.subjectRandom forestspt_BR
dc.subjectMachine learningpt_BR
dc.subjectMorango - Qualidadept_BR
dc.subjectResposta sensorialpt_BR
dc.subjectModelos de regressãopt_BR
dc.subjectFlorestas aleatóriaspt_BR
dc.subjectAprendizado de máquinapt_BR
dc.titleQuality control of fresh strawberries by a random forest modelpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCA - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.