Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/48147
Full metadata record
DC FieldValueLanguage
dc.creatorCosta, Eurinardo-
dc.creatorPessoa, Victor Lage-
dc.creatorSampaio, Rudini-
dc.creatorSoares, Ronan-
dc.date.accessioned2021-09-16T17:59:02Z-
dc.date.available2021-09-16T17:59:02Z-
dc.date.issued2019-08-30-
dc.identifier.citationCOSTA, E. et al. PSPACE-hardness of Two Graph Coloring Games. Electronic Notes in Theoretical Computer Science, [S. l.], v. 346, p. 333-344, 30 Aug. 2019. DOI: 10.1016/j.entcs.2019.08.030.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/48147-
dc.description.abstractIn this paper, we answer a long-standing open question proposed by Bodlaender in 1991: the game chromatic number is PSPACE-hard. We also prove that the game Grundy number is PSPACE-hard. In fact, we prove that both problems (the graph coloring game and the greedy coloring game) are PSPACE-Complete even if the number of colors is the chromatic number. Despite this, we prove that the game Grundy number is equal to the chromatic number for several superclasses of cographs, extending a result of Havet and Zhu in 2013.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceElectronic Notes in Theoretical Computer Sciencept_BR
dc.subjectColoring gamept_BR
dc.subjectGame chromatic numberpt_BR
dc.subjectGreedy coloringpt_BR
dc.subjectGrundy numberpt_BR
dc.subjectPSPACE-hardnesspt_BR
dc.subjectJogos de colorirpt_BR
dc.subjectNúmero cromático do jogopt_BR
dc.subjectNúmero Grundypt_BR
dc.titlePSPACE-hardness of Two Graph Coloring Gamespt_BR
dc.typeArtigopt_BR
Appears in Collections:DCC - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_PSPACE-hardness of Two Graph Coloring Games.pdf243,31 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Admin Tools