Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/4774
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Nunes, C. A. | - |
dc.creator | Resende, E. C. | - |
dc.creator | Aes, I. G. | - |
dc.creator | Anastácio, A. S. | - |
dc.creator | Guerreiro, M. C. | - |
dc.date.accessioned | 2014-12-04T17:20:11Z | - |
dc.date.available | 2014-12-04T17:20:11Z | - |
dc.date.issued | 2011-03-01 | - |
dc.identifier.citation | NUNES, C. A. et al . In-situ monitoring of the structure of a goethite-based catalyst during methane oxidation by X-ray absorption near-edge structure (XANES) spectroscopy assisted by chemometric methods. Applied Spectroscopy, Baltimore, v. 65, n. 6, p. 692-697, June 2011. | pt_BR |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/pubmed/21639992 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/4774 | - |
dc.description.abstract | A goethite-based catalyst was evaluated using in-situ X-ray absorption near-edge structure (XANES) spectroscopy during methane oxidation under increasing reaction temperature. Determination of rank by median absolute deviation (DRMAD), evolving factor analysis (EFA), and multivariate curve resolution (MCR) were used to detect the species present in the catalyst during the reaction and determine their concentration profiles and their pure spectra. The reactants and reaction products were monitored on-line by mass spectrometer. The goethite-based catalyst was active for methane oxidation, with CO(2) and H(2)O as the main products. DRMAD and EFA were useful to determine the number of chemical species present in the catalyst structure during reactions. The catalyst presented phase transition during the reaction from goethite to maghemite according to XANES spectra determined by MCR. On the other hand, it was verified that the catalyst presented phase transition from goethite to wüstite in the process in the absence of the oxidant (O(2)). | pt_BR |
dc.language | en | pt_BR |
dc.publisher | Society for Applied Spectroscopy | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.source | Applied Spectroscopy | pt_BR |
dc.subject | Goethite | pt_BR |
dc.subject | Methane oxidation | pt_BR |
dc.subject | X-ray absorption near-edgestructure spectroscopy | pt_BR |
dc.subject | XANES spectroscopy | pt_BR |
dc.subject | Chemometrics | pt_BR |
dc.subject | Determination of rank by median absolute deviation | pt_BR |
dc.subject | DRMAD | pt_BR |
dc.subject | Evolving factor analysis | pt_BR |
dc.subject | EFA | pt_BR |
dc.subject | Multivariate curve resolution | pt_BR |
dc.subject | MCR | pt_BR |
dc.title | In-situ monitoring of the structure of a goethite-based catalyst during methane oxidation by X-ray absorption near-edge structure (XANES) spectroscopy assisted by chemometric methods | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCA - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.