Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/46907
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAlexander, Ronald-
dc.creatorCampani, Gilson-
dc.creatorDinh, San-
dc.creatorLima, Fernando V.-
dc.date.accessioned2021-08-20T18:51:32Z-
dc.date.available2021-08-20T18:51:32Z-
dc.date.issued2020-11-
dc.identifier.citationALEXANDER, R. et al. Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes. Processes, [S. I.], v. 8, n. 11, 2020. DOI: 10.3390/pr8111462.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/46907-
dc.description.abstractThis paper provides an overview of nonlinear state estimation techniques along with a discussion on the challenges and opportunities for future work in the field. Emphasis is given on Bayesian methods such as moving horizon estimation (MHE) and extended Kalman filter (EKF). A discussion on Bayesian, deterministic, and hybrid methods is provided and examples of each of these methods are listed. An approach for nonlinear state estimation design is included to guide the selection of the nonlinear estimator by the user/practitioner. Some of the current challenges in the field are discussed involving covariance estimation, uncertainty quantification, time-scale multiplicity, bioprocess monitoring, and online implementation. A case study in which MHE and EKF are applied to a batch reactor system is addressed to highlight the challenges of these technologies in terms of performance and computational time. This case study is followed by some possible opportunities for state estimation in the future including the incorporation of more efficient optimization techniques and development of heuristics to streamline the further adoption of MHE.pt_BR
dc.languageenpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute - MDPIpt_BR
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceProcessespt_BR
dc.subjectState estimationpt_BR
dc.subjectNonlinear systempt_BR
dc.subjectExtended Kalman filterpt_BR
dc.subjectMoving horizon estimationpt_BR
dc.subjectEstimação de estadopt_BR
dc.subjectSistema não linearpt_BR
dc.subjectFiltro de Kalman estendidopt_BR
dc.subjectEstimador de horizonte móvelpt_BR
dc.titleChallenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes.pdf4,11 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons