Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/46643
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Barbosa, Rodrigo Carvalho | - |
dc.creator | Ayub, Muhammad Shoaib | - |
dc.creator | Rosa, Renata Lopes | - |
dc.creator | Zegarra Rodríguez, Demóstenes | - |
dc.creator | Wuttisittikulkij, Lunchakorn | - |
dc.date.accessioned | 2021-07-02T18:33:19Z | - |
dc.date.available | 2021-07-02T18:33:19Z | - |
dc.date.issued | 2020-10 | - |
dc.identifier.citation | BARBOSA, R. C. et al. Lightweight PVIDNet: A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights. Sensors, [S. I.], v. 20, n. 21, 2020. DOI: 10.3390/s20216218. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/46643 | - |
dc.description.abstract | Minimizing human intervention in engines, such as traffic lights, through automatic applications and sensors has been the focus of many studies. Thus, Deep Learning (DL) algorithms have been studied for traffic signs and vehicle identification in an urban traffic context. However, there is a lack of priority vehicle classification algorithms with high accuracy, fast processing, and a lightweight solution. For filling those gaps, a vehicle detection system is proposed, which is integrated with an intelligent traffic light. Thus, this work proposes (1) a novel vehicle detection model named Priority Vehicle Image Detection Network (PVIDNet), based on YOLOV3, (2) a lightweight design strategy for the PVIDNet model using an activation function to decrease the execution time of the proposed model, (3) a traffic control algorithm based on the Brazilian Traffic Code, and (4) a database containing Brazilian vehicle images. The effectiveness of the proposed solutions were evaluated using the Simulation of Urban MObility (SUMO) tool. Results show that PVIDNet reached an accuracy higher than 0.95, and the waiting time of priority vehicles was reduced by up to 50%, demonstrating the effectiveness of the proposed solution. | pt_BR |
dc.language | en | pt_BR |
dc.publisher | Multidisciplinary Digital Publishing Institute - MDPI | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Sensors Journal | pt_BR |
dc.subject | Intelligent traffic light | pt_BR |
dc.subject | Deep learning | pt_BR |
dc.subject | Image detection | pt_BR |
dc.subject | Vehicle classification | pt_BR |
dc.subject | Semáforo inteligente | pt_BR |
dc.subject | Aprendizagem profunda | pt_BR |
dc.subject | Detecção de imagem | pt_BR |
dc.subject | Veículos prioritários - Classificação | pt_BR |
dc.title | Lightweight PVIDNet: A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCC - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Lightweight PVIDNet A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights.pdf | 4,26 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons
Ferramentas do administrador