Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/43017
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBenedet, Lucas-
dc.creatorFaria, Wilson Missina-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorMancini, Marcelo-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorDemattê, José Alexandre Melo-
dc.creatorCuri, Nilton-
dc.date.accessioned2020-09-11T17:59:52Z-
dc.date.available2020-09-11T17:59:52Z-
dc.date.issued2020-04-15-
dc.identifier.citationBENEDET, L. et al. Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy. Geoderma, Amsterdam, v. 365, 114212, Apr. 2020. DOI: https://doi.org/10.1016/j.geoderma.2020.114212.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0016706119324826#!pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/43017-
dc.description.abstractRecently, portable X-ray fluorescence (pXRF) spectrometer and visible near-infrared (Vis-NIR) spectroscopy are increasingly being applied for soil types and attributes prediction, but a few works have used them combined in tropical regions. Thus, this work aimed at analyzing models’ performance when predicting soil types at subgroup taxonomic level via pXRF and Vis-NIR separately and together. 315 soil samples were collected in both A and B horizons in three important Brazilian states. Samples undergone laboratorial analyses for soil classification and were submitted to pXRF and Vis-NIR (350–2500 nm) analyses. Vis-NIR spectral data preprocessing was evaluated utilizing Savitzky-Golay (WT) and Savitzky-Golay with Binning (WB) methods. Four classification algorithms were employed in modeling: Support Vector Machine with Linear (SVM-L) and Radial (SVM-R) kernel, C5.0, and Random Forest (RF). Predictions were made using only B horizon and using A + B horizon data. Overall accuracy and Cohen’s Kappa index evaluated model quality. Both sensors displayed efficacy in soil types prediction. A + B horizons data combined using pXRF + Vis-NIR via SVM-R (WT and WB) delivered accurate predictions (89.32% overall accuracy and 0.75 Kappa index), but the best predictions were achieved using only B horizon data via pXRF with RF, pXRF + Vis-NIR (WT) with RF, pXRF + Vis-NIR (WB) with C5.0, and pXRF + Vis-NIR (WB) with RF (89.23% overall accuracy and 0.80 Kappa index). For tropical soils, soil subgroup prediction using only B horizon data obtained by pXRF in tandem with RF algorithm may be a viable alternative to assist in soil classification, especially when the acquisition of Vis-NIR is not possible.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeodermapt_BR
dc.subjectSoil classificationpt_BR
dc.subjectSupport vector machinept_BR
dc.subjectTropical soilspt_BR
dc.subjectProximal sensorspt_BR
dc.subjectPortable X-ray fluorescence (pXRF)pt_BR
dc.subjectClassificação do solopt_BR
dc.subjectMáquina de vetor de suportept_BR
dc.subjectSensores proximaispt_BR
dc.subjectFluorescência de raios-x portátilpt_BR
dc.titleSoil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopypt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.