Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42841
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMiranda, Jonathan da Rocha-
dc.creatorAlves, Marcelo de Carvalho-
dc.date.accessioned2020-09-03T18:07:38Z-
dc.date.available2020-09-03T18:07:38Z-
dc.date.issued2020-
dc.identifier.citationMIRANDA, J. da R.; ALVES, M. de C. The use of machine learning in digital processing of satellite images applied to coffee crop. CAB Reviews, Wallingford, v. 15, n. 45, p. 1-10, 2020. DOI: 10.1079/PAVSNNR202015045.pt_BR
dc.identifier.urihttps://www.cabdirect.org/cabdirect/abstract/20203350450pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42841-
dc.description.abstractRemote sensing can be used to monitor and estimate, with reasonable correct answers, the yield, plant health, and coffee nutrition. Satellite-coupled sensors can obtain information about the spectral signature of the crop, on a time scale, in order to monitor and detect phenological changes. However, the accumulation of data obtained by orbital sensors makes it difficult to understand the relationship between the aspects of coffee. Thus, machine learning can perform data mining and meet the spectral signature patterns that constitute coffee behavior. This literature review sought the survey of research that used machine learning tools applied in digital image processing from satellites for coffee crop monitoring.pt_BR
dc.languageenpt_BR
dc.publisherCABIpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceCAB Reviewspt_BR
dc.subjectRemote sensingpt_BR
dc.subjectsatellite imagerypt_BR
dc.subjectCoffeept_BR
dc.subjectImage processingpt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectProcessamento digital de imagenspt_BR
dc.subjectCafeiculturapt_BR
dc.subjectImagem de satélitept_BR
dc.titleThe use of machine learning in digital processing of satellite images applied to coffee crop.pt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEA - Artigos publicados em periódicos
DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.