Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42817
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAbreu, Lucas Henrique Pedrozo-
dc.creatorYanagi Junior, Tadayuki-
dc.creatorHernández Julio, Yamid Fabián-
dc.creatorFerraz, Patrícia Ferreira Ponciano-
dc.date.accessioned2020-09-02T17:30:38Z-
dc.date.available2020-09-02T17:30:38Z-
dc.date.issued2020-02-
dc.identifier.citationABREU, L. H. P. et al. Artificial neural networks for prediction of physiological and productive variables of broilers. Engenharia Agrícola, Jaboticabal, v. 40, n. 1, jan./fev. 2020. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v40n1p1-9/2020.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42817-
dc.description.abstractDue to a number of factors involving the thermal environment of a broiler cutting installation and its interaction with the physiological and productive responses of birds, artificial intelligence has been shown to be an interesting methodology to assist in the decision-making process. For this reason, the main aim of this work was to develop an artificial neural network (ANN) to predict feed conversion (FC), water consumption (Cwater), and cloacal temperature (tclo) of broilers submitted to different air dry-bulb temperatures (24, 27, 30, and 33°C) and durations (1, 2, 3, and 4 days) of thermal stress in the second week of the production cycle. Relative humidity and wind speed were fixed at 60% and 0.2 ms−1, respectively. The experimental data were used for the development of an ANN with supervised training using the Levenberg-Marquardt backpropagation algorithm. The ANN consisted of three input layers one hidden, and three output with sigmoidal tangent transfer functions with values between −1 and 1. The developed ANN has adequate predictive capacity, with coefficients of determination (R2) for tclo, FC, and Cwater of 0.79, 0.87, and 0.97, respectively. In this way, the proposed ANN can be used as a support for decision-making to trigger poultry heating systems for broiler breeding.pt_BR
dc.languageenpt_BR
dc.publisherAssociação Brasileira de Engenharia Agrícolapt_BR
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEngenharia Agrícolapt_BR
dc.subjectPoultrypt_BR
dc.subjectThermal stresspt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectFrango de cortept_BR
dc.subjectEstresse térmicopt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.titleArtificial neural networks for prediction of physiological and productive variables of broilerspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Artificial neural networks for prediction of physiological and productive variables of broilers.pdf1,14 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons