Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42764
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorWeindorf, David C.-
dc.creatorPinto, Leandro Campos-
dc.creatorFaria, Wilson Missina-
dc.creatorAcerbi Junior, Fausto Weimar-
dc.creatorGomide, Lucas Rezende-
dc.creatorMello, José Márcio de-
dc.creatorPádua Junior, Alceu Linares de-
dc.creatorSouza, Igor Alexandre de-
dc.creatorTeixeira, Anita Fernanda dos Santos-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2020-08-31T17:48:58Z-
dc.date.available2020-08-31T17:48:58Z-
dc.date.issued2020-03-15-
dc.identifier.citationSILVA, S. H. G. et al. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach. Geoderma, Amsterdam, v. 362, 114136, 15 Mar. 2020. DOI: https://doi.org/10.1016/j.geoderma.2019.114136.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0016706119301612#!pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42764-
dc.description.abstractSoil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al2O3 (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO2 (-0.75), while the sand fraction correlated positively with SiO2 corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R2 0.83; RMSE = 7.04%) and sand contents (R2 0.87; RMSE = 9.11%), while RF provided the best results for silt (R2 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R2 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R2 0.72; RMSE = 5.77%) and clay (R2 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeodermapt_BR
dc.subjectProximal sensorspt_BR
dc.subjectSoil particle sizept_BR
dc.subjectPrediction modelspt_BR
dc.subjectBrazilian soilspt_BR
dc.subjectSensores proximaispt_BR
dc.subjectTamanho de partícula do solopt_BR
dc.subjectModelos de previsãopt_BR
dc.subjectSolos brasileirospt_BR
dc.titleSoil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approachpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos
DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.