Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/42430
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Borges, Fernando Elias de Melo | - |
dc.creator | Pinto, Andrey Willian Marques | - |
dc.creator | Pereira, Daniel Augusto | - |
dc.creator | Barbosa, Bruno Henrique Groenner | - |
dc.creator | Magalhães, Ricardo Rodrigues | - |
dc.creator | Ferreira, Danton Diego | - |
dc.creator | Barbosa, Tássio Spuri | - |
dc.date.accessioned | 2020-08-14T18:48:44Z | - |
dc.date.available | 2020-08-14T18:48:44Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | BORGES, F. E. de M. et al. Higher-Order Statistics and support vector machines applied to fault detection in a cantilever beam. Theoretical and Applied Engineering, Lavras, v. 4, n. 1, p. 1-8, 2020.. | pt_BR |
dc.identifier.uri | http://www.taaeufla.deg.ufla.br/index.php/TAAE/article/view/30 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/42430 | - |
dc.description.abstract | In this paper, it is proposed a method to detect structural faults or damages using Higher-Order Statistics (HOS). For this, vibration signals were taken from cantilever beams. Such vibrations were generated by a DC motor with varying rotation, generating vibrations at various frequencies. Vibration signals and engine speed control were performed by an Arduino board. After the signal acquisition, parameters are extracted by means of second-, third- and fourthorder cumulants and then the most relevant ones were selected by the Fisher’s Discriminant Ratio (FDR). To fault detection, a Support Vector Machine (SVM) classifier has been designed in its One-Class version, where only oneclass knowledge is required. The results showed a good ability to represent vibration signals via HOS along with a large reduction in dimensionality given using FDR and a good generalization by means of the SVM classifier. Failure detection results showed 100% success rates. | pt_BR |
dc.language | en | pt_BR |
dc.publisher | Universidade Federal de Lavras | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Theoretical and Applied Engineering | pt_BR |
dc.subject | Vibration analysis | pt_BR |
dc.subject | Structural health monitoring | pt_BR |
dc.subject | One-Class learning | pt_BR |
dc.subject | Análise de vibração | pt_BR |
dc.subject | Monitoramento de integridade estrutural | pt_BR |
dc.subject | Detecção de falhas | pt_BR |
dc.subject | Máquina de vetores de suporte | pt_BR |
dc.subject | Função discriminante de Fisher | pt_BR |
dc.title | Higher-Order Statistics and support vector machines applied to fault detection in a cantilever beam | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DAT - Artigos publicados em periódicos DEG - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.