Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/42303
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Strapasson, João Eloir | - |
dc.creator | Ferrari, Agnaldo José | - |
dc.creator | Jorge, Grasiele Cristiane | - |
dc.creator | Costa, Sueli Irene Rodrigues | - |
dc.date.accessioned | 2020-08-10T14:03:00Z | - |
dc.date.available | 2020-08-10T14:03:00Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | STRAPASSON, J. E. et al. Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices. Journal of Algebra and Its Applications, [S.l.], 2021. | pt_BR |
dc.identifier.uri | https://www.worldscientific.com/doi/10.1142/S0219498821500298 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/42303 | - |
dc.description.abstract | In this paper, we construct some families of rotated unimodular lattices and rotated direct sum of Barnes–Wall lattices BWn for n=4,8 and 16 via ideals of the ring of the integers Z[ζ2rq+ζ−12rq] for q=3,5 and 15. We also construct rotated BW16 and BW32-lattices via Z-submodules of Z[ζ2r15+ζ−12r15]. Our focus is on totally real number fields since the associated lattices have full diversity and then may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. The minimum product distances of such constructions are also presented here. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | World Scientific | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Journal of Algebra and Its Applications | pt_BR |
dc.subject | Unimodular lattices | pt_BR |
dc.subject | Barnes-Wall lattices | pt_BR |
dc.subject | Cyclotomic fields | pt_BR |
dc.subject | Minimum product distance | pt_BR |
dc.title | Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DEX - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.