Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41801
Título: | MIA-QSAR modeling of activities of a series of AZT analogues: bi- and multilinear PLS regression |
Palavras-chave: | MIA-QSAR AZT analogues HIV PLS N-PLS Multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) Azidothymidine (AZT) Partial least squares (PLS) Multiway partial least squares (N-PLS) |
Data do documento: | 2010 |
Editor: | Taylor & Francis |
Citação: | GOODARZI, M.; FREITAS, M. P. MIA-QSAR modeling of activities of a series of AZT analogues: bi- and multilinear PLS regression. Molecular Simulation, [S.l.], v. 36, n. 4, p. 267-272, 2010. DOI: 10.1080/08927020903278001. |
Resumo: | The activities of a series of azidothymidine derivatives, compounds with anti-HIV potency, were computationally modelled using multivariate image analysis applied to quantitative structure–activity relationships (MIA-QSAR). Two regression methods were tested in order to find the best correlation between actual and predicted activities: bilinear (traditional) partial least squares (PLS), applied to the unfolded dataset, and multilinear PLS (N-PLS), applied to the three-way array. The predictive abilities of the PLS- and N-PLS-based models were found to be nearly equivalent, and both the methods derived QSAR models that are statistically superior to conventional QSAR, in which physicochemical descriptors and multiple linear regression were applied. |
URI: | https://www.tandfonline.com/doi/abs/10.1080/08927020903278001 http://repositorio.ufla.br/jspui/handle/1/41801 |
Aparece nas coleções: | DQI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.