Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/41402
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPierangeli, Luiza Maria Pereira-
dc.date.accessioned2020-06-12T13:09:34Z-
dc.date.available2020-06-12T13:09:34Z-
dc.date.issued2020-06-10-
dc.date.submitted2020-01-31-
dc.identifier.citationPIERANGELI, L. M. P. Prediction of soil attributes via pxrf spectrometry, magnetic susceptibility, and terrain attributes in a highly heterogeneous tropical area. 2020. 61 p. Dissertação (Mestrado em Ciência do Solo)–Universidade Federal de Lavras, Lavras, 2020.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/41402-
dc.description.abstractDigital elevation models (DEM) and their derived variables, terrain attributes (TA), are commonly used in soil mapping. The use of proximal sensors, such as portable X-ray fluorescence spectrometer (pXRF) and susceptibilimeter, which determines magnetic susceptibility (MS), provides additional information that has improved the results obtained using only TAs. This work is composed of two chapters, whose studies were conducted at the Palmital Experimental Farm, belonging to the Federal University of Lavras (UFLA). The chapters are related to the use of proximal sensors in conjunction with TA for the prediction of physical and chemical attributes of soils. The first chapter contemplates the use of two proximal sensors, pXRF and MS, together with TA for the prediction of clay, silt, and sand contents through the random forest algorithm. The second chapter discusses the use of pXRF and MS in conjunction with TA in predicting available contents of B, Cu, Fe, Mn, and Zn. The maps were generated for the Palmital farm and validated for each predicted attribute, comparing the efficiency of each model. For the prediction of clay, silt, and sand, all models used the information acquired by pXRF in the final models. On the other hand, for the prediction of B and Zn, only the TA information was sufficient to achieve satisfactory R2 values. Clay and sand showed moderate accuracy, while silt showed low accuracy. For the prediction of chemical attributes, Cu, Fe, Mn, and Zn presented high to moderate accuracy. However, B reached low accuracy. This shows that pXRF is a powerful tool to assist in the accurate prediction of some soil attributes in a punctual and spatial way, contributing to the digital soil mapping.pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsrestrictAccesspt_BR
dc.subjectMicronutrientspt_BR
dc.subjectGranulometric fractionspt_BR
dc.subjectRandom forestpt_BR
dc.subjectProximal sensingpt_BR
dc.subjectPedometricpt_BR
dc.subjectPortable X-ray fluorescence spectrometer (pXRF)pt_BR
dc.subjectMicronutrientespt_BR
dc.subjectFrações granulométricaspt_BR
dc.subjectSensores próximospt_BR
dc.subjectPedometriapt_BR
dc.subjectEspectrômetro de florescência de raios-X portátilpt_BR
dc.titlePrediction of soil attributes via pXRF spectrometry, magnetic susceptibility, and terrain attributes in a highly heterogeneous tropical areapt_BR
dc.title.alternativePredição de atributos do solo através da espectrometria pXRF, susceptibilidade magnética e atributos terrenos em uma área tropical altamente heterogênicapt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-graduação em Ciência do Solopt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Silva, Sérgio Henrique Godinho-
dc.contributor.referee1Silva, Sérgio Henrique Godinho-
dc.contributor.referee2Curi, Nilton-
dc.contributor.referee3Barbosa, Julierme Zimmer-
dc.description.resumoModelos digitais de elevação (MDE) e seus derivativos, atributos de terreno (AT), são comumente utilizados no mapeamento de solos. O uso de sensores proximais, como espectrômetro de florescência de raios-X portátil (pXRF) e suscetibilímetro, que determina a susceptibilidade magnética (SM), fornece informações adicionais que têm melhorado os resultados obtidos utilizando apenas ATs. Esta dissertação é composta por dois capítulos, cujo estudo foi realizado na Fazenda experimental Palmital, pertencente a Universidade Federal de Lavras (UFLA). Os capítulos estão relacionados ao uso de sensores proximais em conjunto a AT na predição de atributos físicos e químicos do solo. O primeiro capítulo contempla o uso de dois sensores proximais, pXRF e SM, em conjunto com AT para a predição de argila, silte e areia através do algoritmo random forest. O segundo capítulo aborda o uso do pXRF e SM em conjunto com AT na predição dos teores disponíveis de B, Cu, Fe, Mn e Zn. Os mapas foram gerados para a fazenda Palmital e validados para cada atributo predito, comparando-se a eficiência de cada modelo. Para a predição de argila, silte e areia todos os modelos utilizaram as informações adquiridas pelo pXRF nos modelos finais. Porém, para a predição de B e Zn, apenas as informações de AT foram suficientes para alcançar valores de R 2 satisfatórios. Argila e areia apresentaram moderada acurácia enquanto silte apresentou baixa acurácia. Já para a predição dos atributos químicos, Cu, Fe, Mn e Zn apresentaram entre alta a moderada acurácia, entretanto B alcançou baixa acurácia. Isso mostra que o pXRF é uma ferramenta poderosa para auxiliar na predição acurada de alguns atributos do solo de forma pontual e espacial, contribuindo para o mapeamento digital de solos.pt_BR
dc.publisher.departmentDepartamento de Ciência do Solopt_BR
dc.subject.cnpqCiência do Solopt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9373752281067260pt_BR
Aparece nas coleções:Ciência do Solo - Mestrado (Dissertações)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.