Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41320
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Pace, José Henrique Camargo | - |
dc.creator | Latorraca, João Vicente de Figueiredo | - |
dc.creator | Hein, Paulo Ricardo Gherardi | - |
dc.creator | Carvalho, Alexandre Monteiro de | - |
dc.creator | Castro, Jonnys Paz | - |
dc.creator | Silva, Carlos Eduardo Silveira da | - |
dc.date.accessioned | 2020-06-01T18:03:44Z | - |
dc.date.available | 2020-06-01T18:03:44Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | PACE, J. H. C. et al. Wood species identification from Atlantic forest by near infrared spectroscopy. Forest Systems, Madrid, v. 28, n. 3, 2019. Paginação irregular. | pt_BR |
dc.identifier.uri | https://revistas.inia.es/index.php/fs/article/view/14558 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/41320 | - |
dc.description.abstract | Aim of study: Fast and reliable wood identification solutions are needed to combat the illegal trade in native woods. In this study, multivariate analysis was applied in near-infrared (NIR) spectra to identify wood of the Atlantic Forest species. Area of study: Planted forests located in the Vale Natural Reserve in the county of Sooretama (19 ° 01'09 "S 40 ° 05'51" W), Espírito Santo, Brazil. Material and methods: Three trees of 12 native species from homogeneous plantations. The principal component analysis (PCA) and partial least squares regression by discriminant function (PLS-DA) were performed on the woods spectral signatures. Main results: The PCA scores allowed to agroup some wood species from their spectra. The percentage of correct classifications generated by the PLS-DA model was 93.2%. In the independent validation, the PLS-DA model correctly classified 91.3% of the samples. Research highlights: The PLS-DA models were adequate to classify and identify the twelve native wood species based on the respective NIR spectra, showing good ability to classify independent native wood samples. | pt_BR |
dc.language | en | pt_BR |
dc.publisher | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Forest Systems | pt_BR |
dc.subject | Native woods | pt_BR |
dc.subject | NIR | pt_BR |
dc.subject | Principal components | pt_BR |
dc.subject | Partial least squares regression | pt_BR |
dc.subject | Madeiras nativas - Identificação | pt_BR |
dc.subject | Espectroscopia no infravermelho próximo | pt_BR |
dc.subject | Madeira - Mata Atlântica | pt_BR |
dc.subject | Regressão parcial de mínimos quadrados | pt_BR |
dc.title | Wood species identification from Atlantic forest by near infrared spectroscopy | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCF - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.