Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/40898
Título: | Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
Palavras-chave: | Water resources GAMLSS Geostatistics |
Data do documento: | 2019 |
Editor: | Multidisciplinary Digital Publishing Institute |
Citação: | MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019. |
Resumo: | Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises. |
URI: | http://repositorio.ufla.br/jspui/handle/1/40898 |
Aparece nas coleções: | DES - Artigos publicados em periódicos DEX - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Space-time kriging of precipitation - modeling the large-scale variation with model GAMLSS.pdf | 4,04 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons