Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/40789
Full metadata record
DC FieldValueLanguage
dc.creatorVilas Boas, Matheus Guedes-
dc.creatorSantos, Haroldo Gambini-
dc.creatorMerschmann, Luiz Henrique de Campos-
dc.creatorBerghe, Greet Vanden-
dc.date.accessioned2020-05-11T18:50:59Z-
dc.date.available2020-05-11T18:50:59Z-
dc.date.issued2019-09-
dc.identifier.citationVILAS BOAS, M. G. et al. Optimal decision trees for the algorithm selection problem: integer programming based approaches. International Transactions in Operational Research, [S.I.], Sept. 2019. DOI: 10.1111/itor.12724pt_BR
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/itor.12724pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/40789-
dc.description.abstractEven though it is well known that for most relevant computational problems, different algorithms may perform better on different classes of problem instances, most researchers still focus on determining a single best algorithmic configuration based on aggregate results such as the average. In this paper, we propose integer programming‐based approaches to build decision trees for the algorithm selection problem. These techniques allow the automation of three crucial decisions: (urn:x-wiley:09696016:media:itor12724:itor12724-math-0001) discerning the most important problem features to determine problem classes, (urn:x-wiley:09696016:media:itor12724:itor12724-math-0002) grouping the problems into classes, and (urn:x-wiley:09696016:media:itor12724:itor12724-math-0003) selecting the best algorithm configuration for each class. To evaluate this new approach, extensive computational experiments were executed using the linear programming algorithms implemented in the COIN‐OR branch‐and‐cut solver across a comprehensive set of instances, including all MIPLIB benchmark instances. The results exceeded our expectations. While selecting the single best parameter setting across all instances decreased the total running time by 22%, our approach decreased the total running time by 40% on average across 10‐fold cross‐validation experiments. These results indicate that our method generalizes quite well and does not overfit.pt_BR
dc.languageenpt_BR
dc.publisherInternational Federation of Operational Research Societies (IFORS)pt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Transactions in Operational Researchpt_BR
dc.subjectAlgorithm selection problempt_BR
dc.subjectFeature-based parameter tuningpt_BR
dc.subjectDecision treespt_BR
dc.subjectData miningpt_BR
dc.subjectInteger programmingpt_BR
dc.subjectVariable neighborhood searchpt_BR
dc.subjectCOIN-OR branch and cutpt_BR
dc.subjectAlgoritmo de seleçãopt_BR
dc.subjectÁrvores de decisãopt_BR
dc.subjectProblema de Programação Inteirapt_BR
dc.subjectMineração de dadospt_BR
dc.titleOptimal decision trees for the algorithm selection problem: integer programming based approachespt_BR
dc.typeArtigopt_BR
Appears in Collections:DCC - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools