Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/40063
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBueno, Inácio T.-
dc.creatorAcerbi Júnior, Fausto W.-
dc.creatorSilveira, Eduarda M. O.-
dc.creatorMello, José M.-
dc.creatorCarvalho, Luís M. T.-
dc.creatorGomide, Lucas R.-
dc.creatorWithey, Kieran-
dc.creatorScolforo, José Roberto Soares-
dc.date.accessioned2020-04-15T13:40:19Z-
dc.date.available2020-04-15T13:40:19Z-
dc.date.issued2019-
dc.identifier.citationBUENO, I. T. et al. Object-based change detection in the cerrado biome using landsat time series. Remote Sensing, [S.l.], v. 11, n. 5, 2019.pt_BR
dc.identifier.urihttps://www.mdpi.com/2072-4292/11/5/570pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/40063-
dc.description.abstractChange detection methods are often incapable of accurately detecting changes within time series that are heavily influenced by seasonal variations. Techniques for de-seasoning time series or methods that apply the spatial context have been used to improve the results of change detection. However, few studies have explored Landsat’s shortwave infrared channel (SWIR 2) to discriminate between seasonal changes and land use/land cover changes (LULCC). Here, we explored the effectiveness of Operational Land Imager (OLI) spectral bands and vegetation indices for detecting deforestation in highly seasonal areas of Brazilian savannas. We adopted object-based image analysis (OBIA), applying a multidate segmentation to an OLI time series to generate input data for discrimination of deforestation from seasonal changes using the Random Forest (RF) algorithm. We found adequate separability between deforested objects and seasonal changes using SWIR 2. Using spectral indices computed from SWIR 2, the RF algorithm generated a change map with an overall accuracy of 88.3%. For deforestation, the producer’s accuracy was 88.0% and the user’s accuracy was 84.6%. The SWIR 2 channel as well as the mid-infrared burn index presented the highest importance among spectral variables computed by the RF average impurity decrease measure. Our results give support to further change detection studies regarding to suitable spectral channels and provided a useful foundation for savanna change detection using an object-based method applied to Landsat time series.pt_BR
dc.languageen_USpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)pt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceRemote Sensingpt_BR
dc.subjectDeforestationpt_BR
dc.subjectSavannapt_BR
dc.subjectVegetation seasonalitypt_BR
dc.subjectMultidate segmentationpt_BR
dc.subjectShortwave infraredpt_BR
dc.titleObject-based change detection in the cerrado biome using landsat time seriespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.