Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/40010
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGranzotti, C. R. F.-
dc.creatorRibeiro, F. L.-
dc.creatorMartinez, A. S.-
dc.creatorSilva, M. A. A. da-
dc.date.accessioned2020-04-14T12:00:03Z-
dc.date.available2020-04-14T12:00:03Z-
dc.date.issued2019-01-
dc.identifier.citationGRANZOTTI, C. R. F. et al. Persistence length convergence and universality for the self-avoiding random walk. Journal of Physics A: Mathematical and Theoretical, [S.l.], Jan. 2019.pt_BR
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1751-8121/aaeeb0pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/40010-
dc.description.abstractIn this study, we show the convergence and new properties of persistence length, , for the self-avoiding random walk model (SAW) using Monte Carlo data. We generate high precision estimates of several conformational quantities with a pivot algorithm for the square, hexagonal, triangular, cubic and diamond lattices with path lengths of 103 steps. For each lattice, we accurately estimate the asymptotic limit , which corroborates the convergence of to a constant value, and allows us to check the universality on the curves. Based on the estimates we make an ansatz for dependency with lattice cell and spatial dimension, we also find a new geometric interpretation for the persistence length.pt_BR
dc.languageen_USpt_BR
dc.publisherIOP Publishingpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceJournal of Physics A: Mathematical and Theoreticalpt_BR
dc.titlePersistence length convergence and universality for the self-avoiding random walkpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos
DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.