Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/39725
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSoares, Eduardo-
dc.creatorGarcia, Cristiano-
dc.creatorPoucas, Ricardo-
dc.creatorCamargo, Heloisa-
dc.creatorLeite, Daniel-
dc.date.accessioned2020-04-03T13:18:02Z-
dc.date.available2020-04-03T13:18:02Z-
dc.date.issued2019-09-
dc.identifier.citationSOARES, E. et al. Evolving fuzzy set-based and cloud-based unsupervised classifiers for spam detection. IEEE Latin America Transactions, [S.l.], v. 17, n. 9, p. 1449-1457, Sept. 2019.pt_BR
dc.identifier.urihttps://ieeexplore.ieee.org/document/8931138/keywords#keywordspt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/39725-
dc.description.abstractTechnological advancements has made individuals and organizations more dependent on e-mails to communicate and share information. The increasing use of e-mails has led to an increased production of unsolicited commercial messages, known as spam. Spam classification systems able to self-adapt over time, with no human intervention, are rare. Adaptation is interesting as spams vary over time due to the use of different message-masking techniques. Moreover, classification models that handle large volumes of data are essential. Evolving intelligent systems are able to adapt their parameters and structure according to the data stream. This study applies the evolving methods TEDA (Typicality and Eccentricity based Data Analytics) and FBeM (Fuzzy Set-Based Evolving Modeling) for online unsupervised classification of spams. TEDA and FBeM are compared in terms of accuracy, model compactness, and processing time. For dimensionality reduction, a non-parametric Spearman-correlation-based feature selection method is employed. A dataset containing 25,745 samples, being 7,830 spams and 17,915 legitimate e-mails, is considered. 711 features extracted from an e-mail server describe each sample.pt_BR
dc.languageen_USpt_BR
dc.publisherInstitute of Electrical and Electronics Engineerspt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceIEEE Latin America Transactionspt_BR
dc.subjectComputer crimept_BR
dc.subjectData analysispt_BR
dc.subjectElectronic mailpt_BR
dc.subjectFuzzy set theorypt_BR
dc.subjectPattern classificationpt_BR
dc.subjectUnsolicited e-mailpt_BR
dc.titleEvolving fuzzy set-based and cloud-based unsupervised classifiers for spam detectionpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DAT - Artigos publicados em periódicos
DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.