Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/39427
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Oliveira, Lilian M. de | - |
dc.creator | Menezes, Fortunato S. de | - |
dc.creator | Cirillo, Marcelo A. | - |
dc.creator | Saúde, André V. | - |
dc.creator | Borém, Flávio M. | - |
dc.creator | Liska, Gilberto R. | - |
dc.date.accessioned | 2020-03-26T16:13:13Z | - |
dc.date.available | 2020-03-26T16:13:13Z | - |
dc.date.issued | 2020-04 | - |
dc.identifier.citation | OLIVEIRA, L. M. de et al. Machine Learning techniques in muliclass problems with application in sensorial analysis. Concurrency and Computation, [S.l.], v. 32, n. 7, Apr. 2020. | pt_BR |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.5579 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/39427 | - |
dc.description.abstract | Automatic classification methods have been developed in the area of Machine Learning to facilitate the categorization of data. Among the most successful methods are Boosting and Bagging. While Bagging works by combining fit classifiers into the bootstrap samples, Boosting works by sequentially applying a sorting algorithm to reweigh versions of the training dataset, giving more weight to the erroneously classified observations in the previous step. These classifiers are characterized by satisfactory results, low computational cost, and simplicity of implementation. Given these characteristics, there is an interest in verifying the performance of these automatic methods compared to the classical methods of classification in Statistics such as Linear and Quadratic Discriminant Analysis. To compare these techniques, we have used the classification error rates of the models to improve the confidence in the use of Boosting and Bagging methods in more complex classification problem. This study applies these techniques to real and simulated data that have been composed of more than two categories in the response variable. This investigation stimulates the implementation of Boosting and Bagging, by assigning an application in Sensory Analysis. We have concluded that the automatic methods have an optimal classification performance, showing lower error rates compared to the Linear and Quadratic Discriminant Analysis in the tested applications. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Wiley | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Concurrency and Computation | pt_BR |
dc.subject | Boosting | pt_BR |
dc.subject | Bagging | pt_BR |
dc.subject | Discriminant analysis | pt_BR |
dc.subject | Quality of coffees | pt_BR |
dc.title | Machine Learning techniques in muliclass problems with application in sensorial analysis | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCC - Artigos publicados em periódicos DEA - Artigos publicados em periódicos DEG - Artigos publicados em periódicos DEX - Artigos publicados em periódicos DFI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.
Ferramentas do administrador