Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/39291
Título: | Hipsometria: seleção de variáveis e mineração de dados por métodos de inteligência computacional |
Título(s) alternativo(s): | Hypsometry: feauture selection and data mining by computer intelligence methods |
Autores: | Gomide, Lucas Rezende Barbosa, Bruno Henrique Groenner Gomide, Lucas Rezende Silva, Carolina Souza Jarochinski e Scolforo, Henrique Ferraço |
Palavras-chave: | Seleção de recursos Algoritmo genético Florestas nativas Seleção de variáveis Feauture selection Genetic algorithm Native forests |
Data do documento: | 11-Mar-2020 |
Editor: | Universidade Federal de Lavras |
Citação: | MIRANDA, E. N. Hipsometria: seleção de variáveis e mineração de dados por métodos de inteligência computacional. 2020. 87 p. Dissertação (Mestrado em Engenharia Florestal)–Universidade Federal de Lavras, Lavras, 2020. |
Resumo: | The assertive use of dendrometric variables has a direct impact on forest planning, so more accurate results are needed. Height stands out among biometric variables as it is an important attribute commonly used for volume calculation methods and for measuring height and volume increment of trees, etc. Thus, new technologies and techniques have been implemented in recent years to assist in their calculation. In the context of height estimation, traditional statistical models that have a good response can be improved with data mining techniques. In this dissertation, the principle of data mining was applied to feature selection in both chapters to estimate the individual height of the trees of the Rio Grande basin - MG. In the first chapter, the objective was to select variables within traditional literature models, where possible variable combinations were applied as input to nonlinear models, using a dual genetic algorithm, the first selects and assembles the variable combinations, the second parameterize and adjust the constructed model. The generated models presented a small gain in the estimates, and the proposed methodology proved to be efficient in the search for good results, but with difficulties to find good results in problems with many inputs. The proposal proved robust and can be applied to other problems. The second chapter sought to compare traditional methods of predicting height with machine learning methods in their pure and hybrid form. The Random Forest (RF) model with variable reduction proved to be robust, capable of improving the response and reducing the number of entries in the RF model, presenting better results to the others. Techniques that involve the use of computational intelligence are effective in the search for good results, with superior answers than traditional ones, capable of selecting good variables and estimating good height values. |
URI: | http://repositorio.ufla.br/jspui/handle/1/39291 |
Aparece nas coleções: | Engenharia Florestal - Mestrado (Dissertações) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO_Hipsometria seleção de variáveis e mineração de dados por métodos de inteligência computacional.pdf | 6,12 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.