Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/36521
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Broche, Osnel | - |
dc.creator | del Río, Ángel | - |
dc.date.accessioned | 2019-08-29T13:47:03Z | - |
dc.date.available | 2019-08-29T13:47:03Z | - |
dc.date.issued | 2016-08 | - |
dc.identifier.citation | BROCHE, O.; DEL RÍO, Á. Polynomials defining many units. Mathematische Zeitschrift, [S.l.], v. 283, n. 3/4, p. 1195–1200, Aug. 2016. | pt_BR |
dc.identifier.uri | https://link.springer.com/article/10.1007/s00209-016-1638-5 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/36521 | - |
dc.description.abstract | We classify the polynomials with integral coefficients that, when evaluated on a group element of finite order n, define a unit in the integral group ring for infinitely many positive integers n. We show that this happens if and only if the polynomial defines generic units in the sense of Marciniak and Sehgal. We also classify the polynomials with integral coefficients which provides units when evaluated on n-roots of a fixed integer a for infinitely many positive integers n. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Mathematische Zeitschrift | pt_BR |
dc.subject | Positive integer | pt_BR |
dc.subject | Equivalence class | pt_BR |
dc.subject | Generic unit | pt_BR |
dc.subject | Alternative proof | pt_BR |
dc.subject | Finite order | pt_BR |
dc.title | Polynomials defining many units | pt_BR |
dc.type | Artigo | pt_BR |
Appears in Collections: | DEX - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.