Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/36521
Full metadata record
DC FieldValueLanguage
dc.creatorBroche, Osnel-
dc.creatordel Río, Ángel-
dc.date.accessioned2019-08-29T13:47:03Z-
dc.date.available2019-08-29T13:47:03Z-
dc.date.issued2016-08-
dc.identifier.citationBROCHE, O.; DEL RÍO, Á. Polynomials defining many units. Mathematische Zeitschrift, [S.l.], v. 283, n. 3/4, p. 1195–1200, Aug. 2016.pt_BR
dc.identifier.urihttps://link.springer.com/article/10.1007/s00209-016-1638-5pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/36521-
dc.description.abstractWe classify the polynomials with integral coefficients that, when evaluated on a group element of finite order n, define a unit in the integral group ring for infinitely many positive integers n. We show that this happens if and only if the polynomial defines generic units in the sense of Marciniak and Sehgal. We also classify the polynomials with integral coefficients which provides units when evaluated on n-roots of a fixed integer a for infinitely many positive integers n.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceMathematische Zeitschriftpt_BR
dc.subjectPositive integerpt_BR
dc.subjectEquivalence classpt_BR
dc.subjectGeneric unitpt_BR
dc.subjectAlternative proofpt_BR
dc.subjectFinite orderpt_BR
dc.titlePolynomials defining many unitspt_BR
dc.typeArtigopt_BR
Appears in Collections:DEX - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.