Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/35275
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBorges, Vinicius R. P.-
dc.creatorOliveira, Maria Cristina F. de-
dc.creatorSilva, Tha ıs Garcia-
dc.creatorVieira, Armando Augusto Henriques-
dc.creatorHamann, Bernd-
dc.date.accessioned2019-07-12T18:58:58Z-
dc.date.available2019-07-12T18:58:58Z-
dc.date.issued2018-01-
dc.identifier.citationBORGES, V. R. P. Region growing for segmenting green microalgae images. Transactions on Computational Biology and Bioinformatics, New York, v. 15, n. 1, p. 257-270, Jan./Feb. 2018.pt_BR
dc.identifier.urihttps://dl.acm.org/citation.cfm?id=3186447pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/35275-
dc.description.abstractWe describe a specialized methodology for segmenting 2D microscopy digital images of freshwater green microalgae. The goal is to obtain representative algae shapes to extract morphological features to be employed in a posterior step of taxonomical classification of the species. The proposed methodology relies on the seeded region growing principle and on a fine-tuned filtering preprocessing stage to smooth the input image. A contrast enhancement process then takes place to highlight algae regions on a binary pre-segmentation image. This binary image is also employed to determine where to place the seed points and to estimate the statistical probability distributions that characterize the target regions, i.e., the algae areas and the background, respectively. These preliminary stages produce the required information to set the homogeneity criterion for region growing. We evaluate the proposed methodology by comparing its resulting segmentations with a set of corresponding ground-truth segmentations (provided by an expert biologist) and also with segmentations obtained with existing strategies. The experimental results show that our solution achieves highly accurate segmentation rates with greater efficiency, as compared with the performance of standard segmentation approaches and with an alternative previous solution, based on level-sets, also specialized to handle this particular problem.pt_BR
dc.languageen_USpt_BR
dc.publisherAssociation for Computing Machinerypt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceTransactions on Computational Biology and Bioinformaticspt_BR
dc.subjectSeeded region growingpt_BR
dc.subjectFreshwater green microalgaept_BR
dc.subjectImage segmentationpt_BR
dc.subjectGaussian distributionpt_BR
dc.subjectCrescimento da região semeadapt_BR
dc.subjectMicroalgas verdes de água docept_BR
dc.subjectSegmentação de imagenspt_BR
dc.subjectDistribuição gaussianapt_BR
dc.titleRegion growing for segmenting green microalgae imagespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador