Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/34598
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Broche, Osnel | - |
dc.creator | Gonçalves, Jairo Z. | - |
dc.creator | Del Río, Ángel | - |
dc.date.accessioned | 2019-06-04T13:06:32Z | - |
dc.date.available | 2019-06-04T13:06:32Z | - |
dc.date.issued | 2018-10 | - |
dc.identifier.citation | BROCHE, O.; GONÇALVES, J. Z.; DEL RÍO, Á. Group algebras whose units satisfy a laurent polynomial identity. Archiv der Mathematik, [S.l.], v. 111, n. 4, p. 353 - 367, Oct. 2018. | pt_BR |
dc.identifier.uri | https://link.springer.com/article/10.1007/s00013-018-1223-8 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/34598 | - |
dc.description.abstract | Let KG be the group algebra of a torsion group G over a field K. We show that if the units of KG satisfy a Laurent polynomial identity, which is not satisfied by the units of the relative free algebra K[α,β:α2=β2=0] , then KG satisfies a polynomial identity. This extends Hartley’s Conjecture which states that if the units of KG satisfy a group identity, then KG satisfies a polynomial identity. As an application we prove that if the units of KG satisfy a Laurent polynomial identity whose support has cardinality at most 3, then KG satisfies a polynomial identity. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Archiv der Mathematik | pt_BR |
dc.subject | Group rings | pt_BR |
dc.subject | Polynomial identities | pt_BR |
dc.subject | Laurent identities | pt_BR |
dc.title | Group algebras whose units satisfy a laurent polynomial identity | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DEX - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.