Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/33785
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantos, Aladir Horacio dos-
dc.date.accessioned2019-04-24T16:39:51Z-
dc.date.available2019-04-24T16:39:51Z-
dc.date.issued2019-04-09-
dc.date.submitted2000-08-25-
dc.identifier.citationSANTOS, A. H. dos. Teoria de modelos mistos aplicada ao delineamento em blocos aumentados. 2000. 138 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2000.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33785-
dc.description.abstractAugmented designs were proposed to deal with low availability of material to constitute replications and experimental plots, and with large amounts of treatments. Amongst them, augmented block design is largely used. In this design, there are replicated (common) and non-replicated (regular) treatments; in breeding programs the latter are often the selection units and the former standard cultivars. Inference has traditionally been made by means of an intrablock analysis (fixed models). If regular treatments and/or blocks can be considered of random nature, however, a mixed linear model could be used instead, specially if genetic covariance matrix among selection units can be assigned, from pedigree information or molecular marker data. This work aimed at the evaluation of the use of mixed models to describe augmented block designs, and their efficiency over traditional intrablock analysis, using computer simulation. Data were generated considering a fictitious plant species with200 independent genes controlling a trait of interest. Gene effects (that is, half the difference among homozygotes) were random outcomes from an exponential density with mean equal to 1. Frequencies of favorable allele of each locus ranged from 0.2 to 0.8. Populations consisted of sets of randomly generated inbred lines, with different sizes (50, 100 or 200). Molecular data were also generated, considering 100marker loci, in such a way that expected similarities between any pair of lines were the same for trait and marker loci. Such data were used in the estimation of the genetic covariance matrix. Environmental variances were established according to predetermined heritabilities h2 (0.2, 0.5 or 0.8) and split into block and residual components with weights determined by the magnitude of Smith's coefficient b of soil heterogeneity (0.1, 0.5 or 0.9). Two amounts of blocks were considered (0.2 or 0.05 the number of lines). In each combination of such parameters, 100 simulations were made, considering four linear models, varying the nature of block and regular treatment effects (fixed - F, or random - R), respectively FF, FR, RF and RR. The effects of such mixed models were estimated using best linear unbiased prediction (BLUP) and, when at least one of those factors was regarded as random, two variants were considered, assuming or not variance components as known. In the latter, components were estimating by restricted maximum likelihood, using the EM algorithm. The mixed models were evaluated through bias, mean squared error (MSE), Pearson's and Spearman's correlation, and bias on estimating the actual percentage of elite lines, that is, those superior to best common treatment ("elite bias"). Results showed that biases were negligible for all models. Considering the other criteria, for most situations the RR model with known variance components was the best, as theoretically expected. When variance components were estimated, however, correlation of Pearson and that of Spearman were highest with RF model, which is that with recovery of interblock information only. On the other hand, RR model generally showed the least elite biases. Comparing to FF, mixed models (RF or RR) were more efficient specially under lower precision, that is, low to intermediate heritability and high b (high residual variance in relation to block differences). Under such conditions, therefore, results suggested that mixed models could improve inference in breeding programs and that the choice of the model should rely on the kind of selection. If this is truncated, RF model should be preferred; if this is not, such as that based on the performance of check varieties, then RR would be more suitable, justifying the costs of generating molecular data.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectAnálise de variânciapt_BR
dc.subjectEstatísticapt_BR
dc.subjectModelos matemáticospt_BR
dc.subjectAnálise estatísticapt_BR
dc.titleTeoria de modelos mistos aplicada ao delineamento em blocos aumentadospt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Estatística e Experimentação Agropecuáriapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Bearzoti, Eduardo-
dc.contributor.referee1Ferreira, Daniel Furtado-
dc.contributor.referee2Bueno Filho, Julio Silvio de Sousa-
dc.contributor.referee3Duarte, João Batista-
dc.description.resumoOs delineamentos aumentados foram propostos para lidar com situações de baixa disponibilidade de material para compor repetições e parcelas e com grandes quantidades de tratamentos. Dentre eles, o delineamento em blocos aumentados é amplamente utilizado. Nesse delineamento, existem tratamentos repetidos (comuns) e não-repetidos (regulares); em programas de melhoramento, geralmente os últimos são as unidades de seleção e os primeiros são cultivares comerciais. A inferência com esse delineamento tem tradicionalmente sido feita pela análise intrablocos (modelos fixos). No entanto, se os efeitos de tratamentos regulares e/ou de blocos puderem ser considerados de natureza aleatória, um modelo linear misto poderia ser utilizado, particularmente se a matriz de covariâncias genéticas entre as unidades de seleção puder ser levada em conta, utilizando dados de pedigree ou de marcadores moleculares. Com este estudo objetivu-se a avaliação do uso da teoria de modelos mistos para descrever delineamentos em blocos aumentados, e sua eficiência em relação à análise tradicional intrablocos, por meio de simulação em computador. Para tanto, dados eram gerados considerando uma espécie vegetal fictícia com 200 genes independentes controlando uma característica de interesse. Os efeitos dos genes (isto é, metade da diferença entre os homozigotos) eram realizações aleatórias de uma densidade exponencial com média igual a 1. As freqüências dos alelos favoráveis de cada loco variou de 0,2 a 0,8. As populações consistiam de conjuntos de linhagens endogâmicas geradas aleatoriamente, com diferentes tamanhos (50, 100 ou 200). Dados moleculares também eram gerados, considerando 100 locos marcadores, de tal forma que as similaridades entre qualquer par de linhagens eram as mesmas para os locos da característica e dos marcadores. Esses dados eram utilizados na estimação da matriz de covariâncias genéticas. As variâncias ambientais eram estabelecidas de acordo com valores de herdabilidade h2 predeterminadas (0,2, 0,5 ou 0,8) e particionadas em componentes relativos a blocos e ao resíduo, em frações determinadas pela magnitude do coeficiente b de heterogeneidade de solo de Smith (0,1, 0,5 ou 0,9). Duas quantidades de blocos foram consideradas (0,2 ou 0,05 vezes o número de linhagens). Em cada combinação desses parâmetros, 100 simulações eram feitas, considerando 4 modelos lineares, variando a natureza dos efeitos de bloco e de tratamentos regulares (fixo - F, ou aleatório - A), respectivamente FF, FA, AF e AA. Os efeitos de tais modelos mistos eram estimados utilizando a melhor predição linear não tendenciosa (BLUP) e, quando pelo menos um desses fatores era tido como aleatório, duas variações eram consideradas, assumindo e não assumindo os componentes de variância como conhecidos. Neste último caso, os componentes eram estimados pelo método da máxima verossimilhança restrita, utilizando o algoritmo EM. Os modelos mistos foram avaliados por meio do viés, erro quadrático médio, correlações de Pearson e Spearman, e do viés na estimação da porcentagem de linhagens elite, ou seja, superiores à melhor testemunha ou tratamento comum. Os resultados mostraram que os vieses foram negligíveis em todos os modelos. Considerando os demais critérios, na maioria das situações, o modelo AA com componentes de variância conhecidos mostrou-se como o melhor, como teoricamente esperado. Quando os componentes de variância eram estimados, contudo, as correlações de Pearson e Spearman foram maiores com o modelo AF, que é o que recupera a informação interblocos, somente. Por outro lado, o modelo AA geralmente apresentou os menores vieses na estimação de linhagens elites. Comparando com o modelo FF, os modelos mistos (AF ou AA) foram mais eficientes, especialmente sob baixa precisão, ou seja, com herdabilidade baixaa intermediária e alto b (alta variância residual em relação à variação entre blocos). Sob tais condições, portanto, os resultados sugeriram que modelos mistos podem melhorar a inferência e, portanto, o sucesso de programas de melhoramento, e que a escolha do modelo deve se basear no tipo de seleção. Se esta for truncada, o modelo AF deveria ser preferido; se não for, tal como aquela baseada em relação a uma cultivar comercial, então o modelo AA é mais apropriado, justificando os custos de geração de dados moleculares.pt_BR
dc.publisher.departmentDepartamento Estatísticapt_BR
dc.subject.cnpqEstatísticapt_BR
Aparece nas coleções:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO_Teoria de modelos mistos aplicada ao delineamento em blocos aumentados.pdf7,28 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.