Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/33658
Full metadata record
DC FieldValueLanguage
dc.creatorReis, Aliny Aparecida dos-
dc.creatorFranklin, Steven E.-
dc.creatorMello, José Marcio de-
dc.creatorAcerbi Junior, Fausto Weimar-
dc.date.accessioned2019-04-23T11:57:46Z-
dc.date.available2019-04-23T11:57:46Z-
dc.date.issued2019-
dc.identifier.citationREIS, A. A. dos et al. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: a case study in Minas Gerais State, Brazil. International Journal of Remote Sensing. Basingstoke, v. 40, n. 7, p. 2683-2702, 2019.pt_BR
dc.identifier.urihttps://www.tandfonline.com/doi/abs/10.1080/01431161.2018.1530808?journalCode=tres20pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33658-
dc.description.abstractIn this study, we tested the effectiveness of stand age, multispectral optical imagery obtained from the Landsat 8 Operational Land Imager (OLI), synthetic aperture radar (SAR) data acquired by the Sentinel-1B satellite, and digital terrain attributes extracted from a digital elevation model (DEM), in estimating forest volume in 351 plots in a 1,498 ha Eucalyptus plantation in northern Minas Gerais state, Brazil. A Random Forest (RF) machine learning algorithm was used following the Principal Component Analysis (PCA) of various data combinations, including multispectr al and SAR texture variables and DEM-based geomorphometric derivatives. Using multispectral, SAR or DEM variables alone (i.e. Experiments (ii)–(iv)) did not provide accurate estimates of volume (RMSE (Root Mean Square Error) > 32.00 m3 ha−1) compared to predictions based on age since planting of Eucalyptus stands (Experiment (i)). However, when these datasets were individually combined with stand age (i.e. Experiments (v)–(vii)), the RF models resulted in better volume estimates than those obtained when using the individual multispectral, SAR and DEM datasets (RMSE < 28.00 m3 ha−1). Furthermore, a model that integrated the selected variables of these data with stand age (Experiment (viii)) improved volume estimation significantly (RMSE = 22.33 m3 ha−1). The large and increasing area of Eucalyptus forest plantations in Brazil and elsewhere suggests that this new approach to volume estimation has the potential to support Eucalyptus plantation monitoring and forest management practices.pt_BR
dc.languageen_USpt_BR
dc.publisherTaylor & Francispt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Journal of Remote Sensingpt_BR
dc.subjectRemote sensingpt_BR
dc.subjectOperational land imagerpt_BR
dc.subjectSynthetic aperture radarpt_BR
dc.subjectDigital elevation modelpt_BR
dc.subjectPrincipal component analysispt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectImagens de terra operacionalpt_BR
dc.subjectRadar de abertura sintéticapt_BR
dc.subjectModelo de elevação digitalpt_BR
dc.subjectAnálise do componente principalpt_BR
dc.titleVolume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: a case study in Minas Gerais State, Brazilpt_BR
dc.typeArtigopt_BR
Appears in Collections:DCF - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.