Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/33426
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilveira, Eduarda Martiniano de Oliveira-
dc.creatorMello, José Márcio de-
dc.creatorAcerbi Júnior, Fausto Weimar-
dc.creatorCarvalho, Luis Marcelo Tavares de-
dc.date.accessioned2019-04-01T17:01:20Z-
dc.date.available2019-04-01T17:01:20Z-
dc.date.issued2018-
dc.identifier.citationSILVEIRA, E. M. de O. et al. Object-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical features. International Journal of Remote Sensing, Basingstoke, v. 39, n. 8, p. 2597-2619, 2018.pt_BR
dc.identifier.urihttps://www.tandfonline.com/doi/abs/10.1080/01431161.2018.1430397pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33426-
dc.description.abstractA new method for remote-sensing land-use/land-cover (LULC) change detection is proposed to eliminate the effects of forest phenology on classification results. This method is insensitive to spectral changes caused by vegetation seasonality and uses an object-based approach to extract geostatistical features from bitemporal Landsat TM (Thematic Mapper) images. We first create image objects by multiresolution segmentation to extract geostatistical features (semivariogram parameters and indices) and spectral information (average values) from NDVI (normalized difference vegetation index), acquired in the wet and dry seasons, as input data to train a Support Vector Machine algorithm. We also used the image difference traditional change-detection method to validate the effectiveness of the proposed method. We used two classes: (1) LULC change class and (2) seasonal change class. Using the most geostatistical features, the change detection results are considerably improved compared with the spectral features and image differencing technique. The highest accuracy was achieved by the sill (σ2 overall variability) semivariogram parameter (95%) and the AFM (area first lag–first maximum) semivariogram index (88.33%), which were not affected by vegetation seasonality. The results indicate that the geostatistical context makes possible the use of bitemporal NDVI images to address the challenge of accurately detecting LULC changes in Brazilian seasonal savannahs, disregarding changes caused by phenological differences, without using a dense time series of remote-sensing images. The challenge of extracting accurate semivariogram curves from objects of long and narrow shapes requires further study, along with the relationship between the scale of segmentation and image spatial resolution, including the type of change and the initial land-cover class.pt_BR
dc.languageen_USpt_BR
dc.publisherTaylor & Francispt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceInternational Journal of Remote Sensingpt_BR
dc.subjectGeostatisticpt_BR
dc.subjectRemote-sensing land-usept_BR
dc.subjectForest phenologypt_BR
dc.subjectGeoestatísticapt_BR
dc.subjectSensoriamento remoto e uso da terrapt_BR
dc.subjectFenologia florestalpt_BR
dc.titleObject-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical featurespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.